
www.manaraa.com

University of South Florida University of South Florida

Scholar Commons Scholar Commons

Graduate Theses and Dissertations Graduate School

9-16-2003

Graph-Theoretic Techniques for Web Content Mining Graph-Theoretic Techniques for Web Content Mining

Adam Schenker
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd

 Part of the American Studies Commons

Scholar Commons Citation Scholar Commons Citation
Schenker, Adam, "Graph-Theoretic Techniques for Web Content Mining" (2003). Graduate Theses and
Dissertations.
https://scholarcommons.usf.edu/etd/1467

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been
accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons.
For more information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/etd
https://scholarcommons.usf.edu/grad
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F1467&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Graph-Theoretic Techniques for Web Content Mining

by

Adam Schenker

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

College of Engineering

University of South Florida

Major Professor: Abraham Kandel, Ph.D.

Dewey Rundus, Ph.D.

Horst Bunke, Ph.D.

Ken Christensen, Ph.D.

Carlos Smith, Ph.D.

Date of Approval:

September 16, 2003

Keywords: graph similarity, graph distance, machine learning, clustering, classification

© Copyright 2003 , Adam Schenker

www.manaraa.com

Dedication

For my parents.

www.manaraa.com

Acknowledgements

There are many people who helped contribute to the successful completion of this

dissertation. First I would like to thank Dr. Abraham Kandel for supporting me with not

only his scientific and monetary resources, but with his wisdom and kindness. Dr. Mark

Last provided invaluable assistance in performing my research; his feedback always

served to improve the work in meaningful ways. Dr. Horst Bunke was a tremendous help

and source of knowledge; without his constant support and vision this dissertation would

not have been possible. Dr. Dewey Rundus, Dr. Ken Christensen, Dr. Carlos Smith and

Dr. José Zayas-Castro all provided useful comments and advice for improving the

dissertation and their help is greatly appreciated. Finally, it is necessary for me to

mention the staff and my fellow graduate students at the Department of Computer

Science and Engineering each of whom has enabled me reach my goal: Ms. Judy Hyde,

Dr. Scott Dick, Dr. Lawrence Hall, Dr. Rafael Perez, Ms. Sarah Burton and Mr. Daniel

Prieto.

www.manaraa.com

i

Table of Contents

List of Tables iv

List of Figures vi

Abstract x

Chapter One: Introduction 1

Chapter Two: A Review of Web Mining Techniques 6

2.1!Overview of Web Mining Methodologies 6

2.2!Traditional Information Retrieval Techniques for Plain-Text

Documents 7

2.3!Web Search Clustering 9

2.4!Summary 11

Chapter Three: A Review of Graph Similarity Techniques 12

3.1 Introduction 12

3.2 Graph and Subgraph Isomorphism 13

3.3 Graph Edit Distance 15

3.4!Maximum Common Subgraph / Minimum Common Supergraph

Approach 16

3.5 State Space Search Approach 18

3.6 Probabilistic Approach 18

3.7 Distance Preservation Approach 20

3.8 Relaxation Approaches 21

3.9 Mean and Median of Graphs 23

 3.10 Remarks 24

Chapter Four: Graph Models for Web Documents 26

4.1 Pre-Processing 26

4.2 Graph Representations of Web Documents 27

4.3 Complexity Analysis 31

Chapter!Five:!The Graph Hierarchy Construction Algorithm for Organizing

Web Search Results 32

5.1 Introduction 32

5.2 Cluster Hierarchy Construction Algorithm (CHCA) 33

5.2.1 A Review of Inheritance 33

www.manaraa.com

ii

5.2.2 Brief Overview of CHCA 34

5.2.3 CHCA in Detail 35

5.2.4 CHCA: an Example 39

5.2.5 Examination of CHCA as a Clustering Method 40

5.3 Application of CHCA to Search Results Processing 43

5.3.1 Asynchronous Search 43

5.3.2 Implementation, Input Preparation and Pre-processing 44

5.3.3 Selection of Parameters for Web Search 44

5.4 Examples of Results 46

5.4.1 Comparison with Grouper 46

5.4.2 Comparison with Vivísimo 50

5.5 Graph Hierarchy Construction Algorithm (GHCA) 52

5.5.1 Parameters 53

5.5.2 Graph Creation and Pre-processing 54

5.5.3 Graph Hierarchy Construction Algorithm (GHCA) 55

5.5.4 GHCA Examples 57

5.6 Comments 58

Chapter!Six:!A Graph-Theoretical Extension of the k-Means Clustering

Algorithm 61

6.1 Introduction 61

6.2 The Extended k-Means Clustering Algorithm 62

6.3 Web Document Data Sets 63

6.4 Clustering Performance Measures 64

6.5 Comparison with Published Results 65

6.6 Remarks 68

Chapter!Seven:!Comparison of Different Graph-Theoretical Distance Measures

and Graph Representations for Graph-Theoretic Clustering 70

7.1 Introduction 70

7.2 Comparison of Distance Measures 73

7.3 Comparison of Graph Representations 77

7.4!Visualization of Graph Clustering 79

Chapter Eight: The Graph-Theoretic Global k-Means Algorithm 82

8.1 Introduction 82

8.2 Global k-Means vs. Random Initialization 83

8.3 Optimum Number of Clusters 85

Chapter!Nine:!A!Graph-Theoretical Extension of the k-Nearest Neighbors

Classification Algorithm 89 91

9.1 Introduction 89

9.2 k-Nearest Neighbors with Graphs 89

9.3 Experimental Results 90

9.4 Remarks 98

www.manaraa.com

iii

Chapter Ten: Conclusions and Future Work 100

References 103

Appendices 113

Appendix A: Examples of Documents Used in Experiments 114

Appendix B: Graphs Created from Example Documents of Appendix A 120

Appendix C: Nearest Neighbors of Example Documents 123

Appendix D: Graphs of Nearest Neighbors 129

About the Author End Page

www.manaraa.com

iv

List of Tables

Table!5.1 Simple Example to Illustrate Concepts of CHCA 39

Table!5.2 Results of the Grouper Custom System for the Query “Soft

Computing” 48

Table!5.3 Results of the Grouper Custom System for the Query “Data

Compression” 50

Table!5.4 List of Query Strings Used for Comparison 51

Table!5.5 Summary of Comparison for 10 Searches (C: CHCA, V:

Vivísimo) 51

Table!6.1 Results of Our Experiments Compared with Results from Strehl

et al. 66

Table!7.1 Clustering Performance Comparison for K-Series 71

Table!7.2 Distance Measure Comparison for K-Series 72

Table!7.3 Graph Representation Comparison for K-Series 75

Table!8.1 Results for F-Series (Rand Index) 84

Table!8.2 Results for F-Series (Mutual Information) 84

Table!8.3 Results for J-Series (Rand Index) 84

Table!8.4 Results for J-Series (Mutual Information) 85

Table!8.5 Execution Times Using Random Initialization (in Seconds) 85

Table!8.6 Execution Times Using Global k-Means (in Minutes) 85

Table!8.7 Results for F-Series Using Global k-Means 87

Table!8.8 Results for F-Series Using Random Initializations 88

www.manaraa.com

v

Table!8.9 Results for J-Series Using Global k-Means 88

Table!8.10 Results for J-Series Using Random Initializations 88

Table!9.1 Average Times to Classify One K-Series Document for Each Method 93

www.manaraa.com

vi

List of Figures

Figure!3.1 A Graph G and its Compliment G May be Isomorphic 14

Figure!4.1 Example of a Standard Graph Representation of a Document 29

Figure!4.2 Example of a Simple Graph Representation of a Document 29

Figure!4.3 Example of an n-Distance Graph Representation of a Document 29

Figure 5.1 Summary of Notation Used in CHCA 34

Figure!5.2 Cluster Hierarchy Created from the Example in Table 5.1 40

Figure!5.3 Average Number of Clusters Created as a Function of Maximum

Cluster Threshold (MCT) for Three Queries 45

Figure!5.4 Average Number of Clusters Created as a Function of Minimum

Pages Threshold (MPT) for Three Queries 45

Figure!5.5 Cluster Hierarchy Created by CHCA for the Query “Soft

Computing” 47

Figure!5.6 Cluster Hierarchy Created by CHCA for the Query “Data

 compression” 49

Figure!5.7 Pre-processing Phase of GHCA 53

Figure 5.8 Initial Hierarchy Construction Phase of GHCA 55

Figure 5.9 Document Assignment Phase of GHCA 55

Figure 5.10 Cluster Pruning Phase of GHCA 56

Figure!5.11 Results Display Methodology for GHCA 56

Figure!5.12 Examples of Cluster Hierarchies Generated by GHCA 58

Figure!6.1 The Traditional k-Means Clustering Algorithm 62

www.manaraa.com

vii

Figure!6.2 The Graph-Theoretic k-Means Clustering Algorithm 62

Figure!6.3 Mutual Information as a Function of the Maximum Number of

Vertices per Graph 67

Figure!6.4 Clustering Time as a Function of the Maximum Number of

Vertices per Graph 67

Figure!7.1 Distance Measure Comparison for the F-Series Data Set (Rand

Index) 71

Figure!7.2 Distance Measure Comparison for the F-Series Data Set (Mutual

Information) 72

Figure!7.3 Distance Measure Comparison for the F-Series Data Set (Dunn

Index) 72

Figure!7.4 Distance Measure Comparison for the J-Series Data Set (Rand

Index) 73

Figure!7.5 Distance Measure Comparison for the J-Series Data Set (Mutual

Information) 74

Figure!7.6 Distance Measure Comparison for the J-Series data set (Dunn

index) 74

Figure!7.7 Graph Representation Comparison for the F-Series Data Set

(Rand Index) 75

Figure!7.8 Graph Representation Comparison for the F-Series Data Set

(Mutual Information) 76

Figure!7.9 Graph Representation Comparison for the F-Series Data Set

(Dunn Index) 76

Figure!7.10 Graph Representation Comparison for the J-Series Data Set

(Rand Index) 77

Figure!7.11 Graph Representation Comparison for the J-Series Data Set

(Mutual Information) 78

Figure!7.12 Graph Representation Comparison for the J-Series Data Set

(Dunn Index) 78

www.manaraa.com

viii

Figure!7.13 F-Series Data Set Represented by Graphs Scaled to Two

Dimensions Using 10 Nodes/Graph (Left) and 30 Nodes/Graph

(Right) 79

Figure!7.14 J-Series Data Set Represented by Graphs Scaled to Two

Dimensions Using 10 Nodes/Graph (Left) and 30 Nodes/Graph

(Right) 80

Figure!7.15 K-Series Data Set Represented by Graphs Scaled to Two

Dimensions Using 70 Nodes/Graph (Left) and 100 Nodes/Graph

(Right) 80

Figure 9.1 The Basic k-Nearest Neighbors Algorithm 90

Figure!9.2 Classification Accuracy for the F-Series Data Set 91

Figure!9.3 Classification Accuracy for the J-Series Data Set 91

Figure!9.4 Classification Accuracy for the K-Series Data Set 92

Figure!9.5 Distance Measure Comparison for the F-Series 93

Figure!9.6 Distance Measure Comparison for the J-Series 94

Figure!9.7 Distance Measure Comparison for the K-Series 94

Figure!9.8 Graph Representation Comparison for the F-Series 95

Figure!9.9 Graph Representation Comparison for the J-Series 96

Figure!9.10 Graph Representation Comparison for the K-Series 96

Figure!9.11 Combining WGU/MMCSN Distance Measure and Simple

Representation for the J-Series 97

Figure!A.1 Original HTML of Document #68 of the J-Series Data Set

(Partial) 114

Figure!A.2 Original HTML of Document #104 of the J-Series Data Set 115

Figure!A.3 Original HTML of Document #183 of the J-Series Data Set

(Partial) 116

Figure!A.4 Document of Fig.!A.1 as Rendered in a Web Browser (Partial) 117

www.manaraa.com

ix

Figure!A.5 Document of Fig.!A.2 as Rendered in a Web Browser 118

Figure!A.6 Document of Fig.!A.3 as Rendered in a Web Browser (Partial) 119

Figure!B.1 Standard Graph Representation Created from Web Document of

Fig.!A.1 Using 10 Nodes/Graph 120

Figure!B.2 Standard Graph Representation Created from Web Document of

Fig.!A.2 Using 10 Nodes/Graph 121

Figure!B.3 Standard Graph Representation Created from Web Document of

Fig.!A.3 Using 10 Nodes/Graph 122

Figure!C.1 HTML Source of Nearest Neighbor of Document of Fig.!A.1

(Partial) 123

Figure!C.2 HTML Source of Nearest Neighbor of Document of Fig.!A.2

(Partial) 124

Figure!C.3 HTML Source of Nearest Neighbor of Document of Fig.!A.3

(Partial) 125

Figure!C.4 Document of Fig.!C.1 as Rendered in a Web Browser (Partial) 126

Figure!C.5 Document of Fig.!C.2 as Rendered in a Web Browser (Partial) 127

Figure!C.6 Document of Fig.!C.3 as Rendered in a Web Browser (Partial) 128

Figure!D.1 Standard Graph Representation of Document of Fig.!C.1 129

Figure!D.2 Standard Graph Representation of Document of Fig.!C.2 130

Figure D.3 Standard Graph Representation of Document of Fig.!C.3 131

www.manaraa.com

x

Graph-Theoretic Techniques for Web Content Mining

Adam Schenker

ABSTRACT

In this dissertation we introduce several novel techniques for performing data

mining on web documents which utilize graph representations of document content.

Graphs are more robust than typical vector representations as they can model structural

information that is usually lost when converting the original web document content to a

vector representation. For example, we can capture information such as the location,

order and proximity of term occurrence, which is discarded under the standard document

vector representation models. Many machine learning methods rely on distance

computations, centroid calculations, and other numerical techniques. Thus many of these

methods have not been applied to data represented by graphs since no suitable graph-

theoretical concepts were previously available.

We introduce the novel Graph Hierarchy Construction Algorithm (GHCA), which

performs topic-oriented hierarchical clustering of web search results modeled using

graphs. The system we created around this new algorithm and its prior version is

compared with similar web search clustering systems to gauge its usefulness. An

important advantage of this approach over conventional web search systems is that the

results are better organized and more easily browsed by users.

Next we present extensions to classical machine learning algorithms, such as the

k-means clustering algorithm and the k-Nearest Neighbors classification algorithm, which

allows the use of graphs as fundamental data items instead of vectors. We perform

experiments comparing the performance of the new graph-based methods to the

traditional vector-based methods for three web document collections. Our experimental

results show an improvement for the graph approaches over the vector approaches for

both clustering and classification of web documents. An important advantage of the

graph representations we propose is that they allow the computation of graph similarity in

polynomial time; usually the determination of graph similarity with the techniques we use

is an NP-Complete problem. In fact, there are some cases where the execution time of the

graph-oriented approach was faster than the vector approaches.

www.manaraa.com

1

Chapter One

Introduction

With the recent explosive growth of the amount of content on the Internet, it has

become increasingly difficult for users to find and utilize information and for content

providers to classify and catalog documents. Traditional web search engines often return

hundreds or thousands of results for a search, which is time consuming for users to

browse. On-line libraries, search engines, and other large document repositories (e.g.

customer support databases, product specification databases, press release archives, news

story archives, etc.) are growing so rapidly that it is difficult and costly to categorize

every document manually. In order to deal with these problems, researchers look toward

automated methods of working with web documents so that they can be more easily

browsed, organized, and cataloged with minimal human intervention.

In contrast to the highly structured tabular data upon which most machine

learning methods are expected to operate, web and text documents are semi-structured.

Web documents have well-defined structures such as letters, words, sentences,

paragraphs, sections, punctuation marks, HTML tags, and so forth. We know that words

make up sentences, sentences make up paragraphs, and so on, but many of the rules

governing the order in which the various elements are allowed to appear are vague or ill-

defined and can vary dramatically between documents. It is estimated that as much as

85% of all digital business information, most of it web-related, is stored in non-structured

formats (i.e. non-tabular formats, such as those that are used in databases and

spreadsheets) [100]. Developing improved methods of performing machine learning

techniques on this vast amount of non-tabular, semi-structured web data is therefore

highly desirable.

Clustering and classification have been useful and active areas of machine

learning research that promise to help us cope with the problem of information overload

on the Internet. With clustering the goal is to separate a given group of data items (the

data set) into groups called clusters such that items in the same cluster are similar to each

other and dissimilar to the items in other clusters. In clustering methods no labeled

examples are provided in advance for training (this is called unsupervised learning).

Under classification we attempt to assign a data item to a predefined category based on a

model that is created from pre-classified training data (supervised learning). In more

general terms, both clustering and classification come under the area of knowledge

discovery in databases or data mining. Applying data mining techniques to web page

content is referred to as web content mining which is a new sub-area of web mining,

partially built upon the established field of information retrieval.

When representing text and web document content for clustering and

classification, a vector model is typically used [107]. In this model, each possible term

www.manaraa.com

2

that can appear in a document becomes a feature dimension. The value assigned to each

dimension of a document may indicate the number of times the corresponding term

appears on it or it may be a weight that takes into account other frequency information,

such as the number of documents upon which the terms appear. This model is simple and

allows the use of traditional machine learning methods that deal with numerical feature

vectors in a Euclidean feature space. However, it discards information such as the order

in which the terms appear, where in the document the terms appear, how close the terms

are to each other, and so forth. By keeping this kind of structural information we could

possibly improve the performance of various machine learning algorithms. The problem

is that traditional data mining methods are often restricted to working on purely numeric

feature vectors due to the need to compute distances between data items or to calculate

some representative of a cluster of items (i.e. a centroid or center of a cluster), both of

which are easily accomplished in a Euclidean space. Thus either the original data needs

to be converted to a vector of numeric values by discarding possibly useful structural

information (which is what we are doing when using the vector model to represent

documents) or we need to develop new, customized methodologies for the specific

representation.

Graphs are important and effective mathematical constructs for modeling

relationships and structural information. Graphs (and their more restrictive form, trees)

are used in many different problems, including sorting, compression, traffic/flow

analysis, resource allocation, etc. [22] In addition to problems where the graph itself is

processed by some algorithm (e.g. sorting by the depth first method or finding the

minimum spanning tree) it would be extremely desirable in many applications, including

those related to machine learning, to model data as graphs since these graphs can retain

more information than sets or vectors of simple atomic features. Thus much research has

been performed in the area of graph similarity in order to exploit the additional

information allowed by graph representations by introducing mathematical frameworks

for dealing with graphs. Some application domains where graph similarity techniques

have been applied include face [132] and fingerprint [129] recognition as well as

anomaly detection in communication networks [34]. In the literature, the work comes

under several different topic names including graph distance, (exact) graph matching,

inexact graph matching, error tolerant graph matching, or error correcting graph

matching. In exact graph matching we are attempting to determine if two graphs are

identical. Inexact graph matching implies we are attempting not to find a perfect

matching, but rather a “best” or “closest” matching. Error tolerant and error correcting

are special cases of inexact matching where the imperfections (e.g. missing nodes) in one

of the graphs, called the data graph, are assumed to be the result of some errors (e.g. from

transmission or recognition). We attempt to match the data graph to the most similar

model graph in our database. Graph distance is a numeric measure of dissimilarity

between graphs, with larger distances implying more dissimilarity. By graph similarity,

we mean we are interested in some measurement that tells us how similar graphs are

regardless if there is an exact matching between them.

In this dissertation we will be presenting important contributions that help

improve the clustering and classification of web documents. This is accomplished by

representing their content with a more versatile graph model, which can retain additional

www.manaraa.com

3

information that is not captured when using a vector representation. The Graph Hierarchy

Construction Algorithm (GHCA) is a novel hierarchical clustering algorithm we

developed and implemented in a system that hierarchically clusters web search results by

topic. Important features of this clustering method aside from the use of graphs to

represent web documents include labeling of clusters by topic, hierarchical ordering from

general (top level) to more specific (lower level) clusters, multiple inheritance (clusters

with more than one parent), and several parameters that allow user adjustment of the

results. In comparison with similar systems our system has been shown to perform well.

We will also describe graph-theoretical extensions to existing, proven clustering and

classification methods that for the first time allow them to deal with data represented by

graphs rather than vectors. This approach has two main benefits. First, it allows us to

keep the inherent structure of the original data by modeling web document content as a

graph, rather than having to arrive at numeric feature vectors that contain only term

frequency information. Second, we do not need to develop new algorithms or frameworks

to deal with the graphs: we can simply apply straightforward extensions to go from

classical data mining algorithms that use numerical vectors to those that can handle

graphs. It is our contention that by using graphs to keep information that is usually lost

we can improve clustering and classification performance over the usual vector model for

the same algorithm. We will explore this contention through a series of experiments,

using the well known k-means clustering and k-Nearest Neighbors classification

algorithms. A surprising realization during our experiments is that, with careful selection

of the graph representation model for an application, we can achieve polynomial time

complexity for the graph similarity procedure. In the general case this is an NP-Complete

problem. Note that these techniques are not limited to web documents or even text

documents in general: they allow any data sets that are complex enough to require

representation by graphs (e.g. software code, computer networks, maps, images, etc.) to

now be clustered or classified using classical, popular methods without loss of the

inherent structural information.

The remainder of this dissertation is as follows. We give a definition and

overview of the three areas of web mining in Chapter!2. We also give a review of the

most relevant work concerning content-based web mining and web search result

clustering systems in particular.

A thorough literature review of graph similarity techniques as well as the

mathematical definitions and notation needed for the dissertation is presented in

Chapter!3. We will review the maximum common subgraph approach, which is what we

use for graph similarity in our web mining algorithms. We will also give introductions to

some other related methods including graph isomorphism, graph edit distance, and

median of a set of graphs. The five graph-theoretical distance measures we use will also

be presented here.

In Chapter!4 we will show how web documents can be modeled as graphs and

give some implementation details relating to the creation of document models from their

content. We compare several graph representation approaches in our experiments, which

are introduced here with examples. The complexity analysis related to these

representations is also given.

www.manaraa.com

4

In Chapter!5 we introduce the Graph Hierarchy Construction Algorithm (GHCA),

which is based on our earlier work on the Cluster Hierarchy Construction Algorithm

(CHCA) [110][111]. We will present this novel algorithm which can accomplish the task

of hierarchically clustering web search results returned from conventional web search

engines. With CHCA, web pages are represented as sets of terms; GHCA uses a more

robust graph representation that allows for the preservation of term phrases (ordering

information) which provides a more coherent display of results to the user. From these

representations we can create a cluster hierarchy that is a model of the application domain

(in this case, the search topic). Such a hierarchy is actually a form of knowledge

representation, similar to frames and semantic networks [76][106]. By creating a

knowledge representation from web documents using GHCA, we allow for search results

to be more easily browsed by users. Search results are grouped by topic and sub-topic

rather than as a single, large ranked list. We have created a working prototype system

which uses these algorithms to create a cluster hierarchy from actual search results that

are returned from conventional search engines using a user’s provided query string.

GHCA creates appropriate clusters from the results and assigns pages to each cluster.

This clustering of the results, along with the fact that the hierarchy structure provides

information about the relationships between the clusters, helps the user by better

organizing the results and providing additional information such as what the related

topics are. We present a comparison to some other similar search result clustering

systems in this chapter.

In extending vector-based CHCA to graph-oriented GHCA we have realized that

many classical machine learning algorithms which typically use vectors can also be

extended to deal with more robust graph representations in a similar way. Thus the

second area we will investigate, which comprises the remainder of the dissertation,

describes methods of utilizing graphs to represent web documents during clustering and

classification using existing, well-known machine learning algorithms.

In Chapter!6 we will describe an extension to the k-means clustering algorithm

that allows the utilization of graphs instead of vectors [112] and illustrate its usefulness

by applying it to the problem of clustering a collection of web documents. We will define

the clustering performance indexes that will be used to measure clustering performance

as well as provide a description of the various data sets that are used in our experiments.

Initial experimental results will be given and compared with previously published results

reported for the same web data set based on a traditional vector representation and the

usual k-means algorithm with various vector-based distance measures.

Our next series of experiments is presented in Chapter!7, where we address the

comparison of different graph similarity measures and graph representations of web

documents in the context of document clustering performance [113][115]. We will use

the graph-oriented k-means clustering algorithm of Chapter!6 to cluster two web

document collections when using one of five graph-theoretic distance measures. We will

also cluster the web documents when represented by graphs using one of the six graph

representation methodologies we have proposed. The clustering performance under each

distance measure and graph representation will be measured by three clustering

performance measures. Clustering performance as a function of graph size is also

www.manaraa.com

5

explored. Euclidean distance and cosine similarity measures are used with the traditional

vector model representation of documents as a baseline for comparison.

In Chapter!8 we will measure the performance of our clustering method when

combined with the global k-means algorithm presented in [71], which provides a

deterministic method of finding “good” initial cluster center positions [117]. Previous

experimental results have shown that initialization with global k-means can lead to

clustering performance which is as good or better than random initializations, and we will

investigate whether this holds true for our methods and data sets as well. We also use this

method to examine the question of the optimum number of clusters for the document

collections. We will use the global k-means initializations for a range of different k values

(numbers of clusters) and measure performance with additional cluster validity indexes.

In Chapter!9 we compare the traditional vector model representation to our new

graph model in the context of the document classification task rather than clustering. We

introduce a graph-based extension of the popular k-Nearest Neighbors classification

algorithm [114][116] and measure classification accuracy using the leave-one-out

approach over all three web document collections. We select several values for the

number of nearest neighbors, k, and look at the classification performance as a function

of the size of the graphs representing each document. We also examine the effect of

different graph-theoretical distance measures and graph representations on classification

accuracy as we did in Chapter!7. Further, we compare execution times of both our graph-

based approach and the traditional vector approach using cosine similarity or Jaccard

similarity.

 Concluding remarks and possible future extensions of the current work will be

given in Chapter 10.

www.manaraa.com

6

Chapter Two

A Review of Web Mining Techniques

2.1 Overview of Web Mining Methodologies

Web mining [140] is the application of machine learning (data mining) techniques

to web-based data for the purpose of learning or extracting knowledge. Web mining

encompasses a wide variety techniques, including soft computing [99]. Web mining

methodologies can generally be classified into one of three distinct categories: web usage

mining, web structure mining, and web content mining [78]. For a survey of techniques

used in these areas, see [63]. In web usage mining the goal is to examine web page usage

patterns in order to learn about a web system’s users or the relationships between the

documents. For example, the tool presented by Masseglia et al. [81] creates association

rules from web access logs, which store the identity of pages accessed by users along

with other information such as when the pages were accessed and by whom; these logs

are the focus of the data mining effort, rather than the actual web pages themselves. Rules

created by their method could include, for example, “70% of the users that visited page A

also visited page B.” Similarly, the method of Nasraoui et al. [95] also examines web

access logs. The method employed in that paper is to perform a hierarchical clustering in

order to determine the usage patterns of different groups of users. Beeferman and Berger

[7] described a process they developed which determines topics related to a user query

using click-through logs and agglomerative clustering of bipartite graphs. The

transaction-based method developed in [87] creates links between pages that are

frequently accessed together during the same session. Web usage mining is useful for

providing personalized web services, an area of web mining research that has lately

become active. It promises to help tailor web services, such as web search engines, to the

preferences of each individual user. For a recent review of web personalization methods,

see [37].

In the second category of web mining methodologies, web structure mining, we

examine only the relationships between web documents by utilizing the information

conveyed by each document’s hyperlinks. Like the web usage mining methods described

above, the other content of the web pages is often ignored. In [66] Kumar et al. examined

utilizing a graph representation of web page structure. Here nodes in the graphs are web

pages and edges indicate hyperlinks between pages. By examining these “web graphs” it

is possible to find documents or areas of interest through the use of certain graph-

theoretical measures or procedures. Structures such as web rings, portals, or affiliated

sites can be identified by matching the characteristics of these structures (e.g. we can

identify portal pages because they have an unusually high out-degree). Graph models are

also used in other web structure mining approaches. For example, in [17] the authors’

www.manaraa.com

7

method examines linked URLs and performs classification using a Bayesian method. The

graph is processed to determine groups of pages that relate to a common topic.

In this dissertation we are concerned only with the third category of web mining,

web content mining. In web content mining we examine the actual content of web pages

(most often the text contained in the pages) and then perform some knowledge discovery

procedure to learn about the pages themselves and their relationships. Most typically this

is done to organize a group of documents into related categories. This is especially

beneficial for web search engines, since it allows users to more quickly find the

information they are looking for in comparison to the usual “endless” ranked list. There

are several examples of web or text mining approaches [3] that are content-oriented and

attempt to cluster documents for browsing. The Athena system of Agrawal et al. [2]

creates groupings of e-mail messages. The goal is to create folders (classes) for different

topics and route e-mail messages automatically to the appropriate folders. Athena uses a

clustering algorithm called C-Evolve to create topics (folders), while the classification of

documents to each cluster is supervised and requires manual interaction with the user.

The classification method is based on Naïve Bayes. Some notable papers that deal with

clustering for web search include [8], which describes 2 partitional methods, and [18],

which is a hierarchical clustering approach. Nahm and Mooney [93] described a

methodology where information extraction and data mining can be combined to improve

upon each other; information extraction provides the data mining process with access to

textual documents (text mining) and in turn data mining provides learned rules to the

information extraction portion to improve its performance.

2.2 Traditional Information Retrieval Techniques for Plain-Text Documents

Traditional information retrieval methods represent plain-text documents using a

series of numeric values for each document. Each value is associated with a specific term

(word) that may appear on a document, and the set of possible terms is shared across all

documents. The values may be binary, indicating the presence or absence of the

corresponding term. The values may also be a non-negative integers, which represents the

number of times a term appears on a document (i.e. term frequency). Non-negative real

numbers can also be used, in this case indicating the importance or weight of each term.

These values are derived through a method such as the popular inverse document

frequency (tf!idf) model [107], which reduces the importance of terms that appear on

many documents. Regardless of the method used, each series of values represents a

document and corresponds to a point (i.e. vector) in a Euclidean feature space; this is

called the vector-space model of information retrieval. This model is often used when

applying machine learning techniques to documents, as there is a strong mathematical

foundation for performing distance measure and centroid calculations using vectors.

Document clustering using the vector model has long been studied in the

information retrieval field as a means of improving retrieval efficiency and corpus

visualization [6][107]. For example, in [29] the application described by the authors uses

the popular agglomerative hierarchical clustering method to create a cluster hierarchy for

the entire document collection for the purpose of visualizing and browsing the document

corpus. Another similar approach is that of Kohonen et al. [62], which uses self-

www.manaraa.com

8

organizing maps, a type of unsupervised neural network, to group documents in a

collection. Like the application described in [29], the Kohonen et al. system provides a

environment where the results and groupings can be browsed. Early work on clustering

documents retrieved by queries for the purpose of improving user navigation through the

results is reported in [55].

A topic related to document clustering is that of document classification. The goal

of such a task is to assign a label (or class) to a previously unseen document. This is

different from document clustering, where the objective is to create groupings of a

document collection. Document classification is a supervised learning task where

example documents and their categories are available for learning in advance. Document

classification is used for automated (rather than manual) categorization for documents. In

[130], Weiss et al. studied the application of decision tree methods in order to categorize

text documents. McCallum and Nigam [82] used a Bayesian (probabilistic) approach for

document classification.

There are several reasons why information retrieval methods that deal with

traditional text documents are not entirely suitable for web content mining. First, web

documents contain additional markup elements (HTML tags) which are not found in

plain-text documents. These elements can be a source of additional knowledge about the

documents. As we saw above, there is a branch of web mining (web structure mining)

that attempts to exploit the hyperlink information found in web documents. This

information is not available for plain-text documents, so we must find ways to

incorporate this information into our data representations during web mining. This is a

major limitation of existing web content mining methods, as they either require

discarding such information to arrive at traditional plain-text vector representations or

they necessitate new or altered data mining procedures which explicitly take the

additional information into account. Second, the web is highly heterogeneous, especially

when compared to document corpora that are related to a single topic or field of interest.

For example, the term “Amazon” can refer to many things on the Internet: an on-line

book store, a rain forest, a river, or a person. Thus we may be unable to use specific

domain knowledge (such as specialized stop word or synonym lists) that we could

otherwise utilize in a system developed for a well-defined, homogeneous document

collection. Additionally, web documents have a wide variation in size, style, layout,

languages, etc. We must deal with these variations. Third, traditional information

retrieval methods may not scale well to the size or dynamic nature of the Internet. Web

pages tend to change often with time (they are updated, they are moved to another

location, etc.) and thus techniques used in traditional information retrieval systems, such

as those related to generation of indices or representatives of documents, can lead to out-

of-date results. The web contains hundreds of millions of pages, some of which change

frequently and must be re-examined periodically. These last two points are especially

problematic for web document categorization methods, since creating an adequate

training set to encompass all desired categories and updating it to deal with changing

conditions is extremely difficult.

In contrast to the methods mentioned above, the work presented here represents

the first time web document content itself has been modeled and retained using graphs in

a web mining method. Note that, as we mentioned above, graph representations have

www.manaraa.com

9

been used for web mining (e.g. web graphs in web structure mining). However, the

difference is that those graphs represent the documents (nodes) and their relationships

through hyperlinks (edges). Our graphs represent the textual content of web documents

through words (nodes) and adjacency information (edges), as will be discussed in detail

in Chapter 4. Only recently have a few papers appeared in the literature that deal with

representing the web documents themselves using graphs. Lopresti and Wilfong

compared web documents using a graph representation that primarily utilizes HTML

parse information, in addition to hyperlink and content order information [72]. In their

approach they use graph probing, which extracts numerical feature information from the

graphs, such as node degrees or edge label frequencies, rather than comparing the graphs

themselves. In contrast, our representation uses graphs created solely from the content,

and we utilize the graphs themselves to determine document similarity rather than a set of

extracted features. Liang and Doermann represent the physical layout of document

images as graphs [70]. In their layout graphs nodes represent elements on the page of a

document, such as columns of text or headings, while edges indicate how these elements

appear together on the page (i.e. they capture the spatial relationships). This method is

based on the formatting and appearance of the documents when rendered, not the textual

content (words) of a document as in our approach. Another recently reported approach

[33][101] takes both the content and structure of web documents into account.

Documents are initially represented by graphs according to either naturally occurring

elements (e.g. pages, sections, paragraphs, etc.) or XML markup structure. However,

rather than manipulating the graphs directly as data, as is done in our approach,

probabilistic information is extracted to create Bayesian networks for retrieval or

classification. Thus this method is more similar to a probabilistic learning model, rather

than a purely graph-theoretical one.

2.3 Web Search Clustering

In Chapter!5 we will introduce a system we have created for the purpose of

clustering search results returned by conventional search engines. The goal is to separate

the results into groups of topics in order to allow the user to more easily find the desired

web pages. Web page clustering as performed by humans was examined by Macskassy et

al. [77]. Ten subjects were involved in the experiments, and each was asked to manually

cluster the results of five different queries submitted to a web search engine at Rutgers

University. The queries were selected from the most popular submitted to this particular

web search engine: accounting, career services, employment, library, and off campus

housing. All subjects received the pages’ URLs and titles, however four of the ten

subjects were also given the full text of each page for each query. The subjects then

clustered the group of documents associated with each query. The investigators examined

the size of clusters created, the number of clusters created, the similarity of created

clusters, the amount of cluster overlap, and documents not clustered. The results

indicated that the size of clusters was not affected by access to the full text of each

document and that there was no preference for a specific cluster size. As to number of

clusters, the subjects who had access to the full text of the web pages tended to create

more clusters than those who did not.

www.manaraa.com

10

There are some important papers that deal specifically with the clustering of web

search results using automated systems. One of the earliest such papers is that of Zamir

and Etzioni [139], which gives some of the first experimental evaluations of clustering

methods as applied to web search results. In that paper the authors introduced a clustering

algorithm called suffix tree clustering (or STC) in order to cluster web search results. STC

works by creating a tree of words encountered in the web documents such that documents

that share words or strings of words also share a common parent node in the tree. The

nodes in this tree are then scored according to the number of documents represented by

the node multiplied by a weighting factor. Based on this score a cluster similarity is

determined, which is used to determine cluster overlap and the merging of overlapping

clusters. The result is a group of clusters which have terms or phrases related with them.

STC was used in the authors’ Grouper system to implement a system for clustering web

search results. STC was also used in a recently reported system called Carrot2, which was

used to cluster both English and Polish documents [119]. We will compare our system to

the Grouper system in Chapter!5. Unfortunately, it is not possible to directly compare our

system to the experimental results of these papers, as the data sets used are not available

to the public. A similar web search system, called MSEEC, was introduced in [51].

MSEEC uses the LZW compression algorithm to generate a tree similar to that of STC.

An interesting feature of MSEEC is that it can utilize multiple search engines. This can

be useful if, for example, the search engines cover different sets of documents. An

updated version of our system also made use of multiple search engines, as did the

system of [25]. No experimental results or comparisons were presented in [51], only the

system architecture and relevant algorithms. The on-line versions of both MSEEC and

Grouper appear to be non-functional as of this writing, limiting us to using the results we

had already gathered previously. Another web search clustering system is described by

He et al. [54]. This system uses a hybrid web structure/web content mining approach to

clustering, by creating a graph of web pages based on their hyperlinks and then

performing a graph partitioning method. Textual information from the pages, in the form

of vector representations, is used to determine the weight of edges in the graph. Co-

citation, where we assume that when many pages link to the same target pages this

implies that the target pages are related, is also used in the calculation of edge weights.

This system was not available to the public, nor was the data used in the experiments.

Organizing web search results using classifiers has also been studied [36], however these

methods require supervised learning using a fixed group or hierarchy of clusters. If new

topics are to be created, as often happens with the highly dynamic nature of the Internet,

the classifier training process must be repeated.

From personal experience in maintaining such a system we know that constant

updates are required as search engine sites periodically change the format that their

results are presented in. Thus many academic-based systems tend to go off-line after a

time. There are some web search clustering systems that are developed with commercial,

rather than academic, interests in mind. These systems are usually not reported in the

scientific literature (except in reviews of such systems). An example of one such system

is Vivísimo [125]. Unfortunately, because the developers often wish to keep the inner

workings of such systems confidential, it is impossible to examine the algorithms used to

the perform clustering. Further, because such systems may be frequently updated (e.g. to

www.manaraa.com

11

improve performance or accommodate changes in search engines), it is extremely

difficult to perform a stable, large, long-term comparison with these systems. In this

dissertation we present a comparison of our system to both Grouper (which is a no longer

functional academically reported system) and Vivísimo (a commercial system) in

Chapter!5, using previously captured results.

Another important paper that is strongly related to the current work is that of

Strehl et al. [120], which examined clustering performance of different clustering

algorithms when using various similarity measures on web document collections.

Clustering methods examined in the paper included k-means, graph partitioning, and self-

organizing maps (SOMs). Vector-based representations were used in the experiments

along with distance measures based on Euclidean distance, cosine similarity, and Jaccard

similarity. Fortunately, one of the data sets used in this paper is publicly available and we

will use it in our experiments in Chapter!6, where we compare the performance of our k-

means clustering method using graph representations to the results presented by Strehl et

al., which use vector representations.

2.4 Summary

Above we mentioned a major drawback of existing web mining methods is that

they either require using a vector representation (as with plain-text documents, which

discards structural and web-related information) or they must develop new algorithms

and frameworks for handling the additional web-related information. Our main novel

contribution in this dissertation is the use of graphs for representing web document

content during web mining and extending existing, proven machine learning algorithms

to operate on these representations. This has not been done before because previously no

mathematical foundation existed for dealing directly and efficiently with graphs in this

way. Using graphs instead of vectors is extremely beneficial because it allows structural

information that is often lost when using simpler models (such as term appearance order

or section information) to be maintained during web mining. This additional information

improves the performance of web document clustering and classification. For a web

search clustering system, graphs have the additional benefit of preserving the term order

information, which provides the user with a more coherent display of cluster labels. Since

we are performing straightforward extensions to existing machine learning methods

which allow them to utilize graphs, rather than creating a new framework specifically for

web documents, we are not tied to any specific graph representation of a web document.

In fact, we will examine several different ways of representing web documents as graphs,

all of which utilize the same algorithms. As long as we can model our data using graphs,

we can apply our techniques to it. This leads to a more general and flexible methodology,

one which is applicable to domains outside of web mining.

In the next chapter we will continue our literature review by looking at techniques

for performing graph-theoretic similarity, which forms the foundation for the

mathematical framework we will use in our web mining techniques.

www.manaraa.com

12

Chapter Three

A Review of Graph Similarity Techniques

3.1 Introduction

We will use the concepts of graph similarity, graph distance, and graph matching

in the following chapters as they form a basis for the novel approaches we have

developed for performing clustering and classification tasks using graphs instead of more

restrictive vectors. The purpose of the current chapter is to give a literature survey of the

various methods that are used to determine similarity, distance and matchings between

graphs as well as introduce the formal notation which will later be necessary to describe

our algorithms. These topics are closely related to the topics of inexact graph matching or

graph similarity, and several practical applications that utilize graph similarity or graph

matching are represented in the literature, many of them in the field of image processing.

Haris et al. performed labeling of coronary angiograms with graph matching [53]. In [97]

a method for allocating tasks in multiprocessor systems using graphs and graph matching

is described. In [57] Huet and Hancock describe a graph matching method for shape

recognition in image databases. Another area where graph similarity and matching is

popular is in chemistry, due to the natural representation of chemical structures (e.g.

molecules) as graphs [47][96]. For a recent review of graph matching techniques used in

pattern recognition, see [21].

In this dissertation we are specifically interested in using graph techniques for

dealing with web document content. Traditional learning methods applied to the tasks of

text or document classification and categorization, such as rule induction [4] and

Bayesian methods [82], are based on a vector model of document representation or an

even simpler Boolean model. Similarity of graphs in domains outside of information

retrieval has largely been studied under the topic of graph matching. Under this model

there exists a database of graphs and an input (or query) graph; the goal is to find the

graph in the database that most closely matches the input graph [67]. In many

applications the input graph is not expected to be an exact match to any database graph

since the input graph is either previously unseen or assumed to be corrupted with some

amount of noise. Thus we sometimes refer to this area as error-tolerant or inexact graph

matching. As mentioned above, a number of graph matching applications have been

reported in the literature, including the recognition of characters, graphical symbols, and

two-dimensional shapes. For a recent survey see [11]. We are not aware, however, of any

graph matching applications that deal with content-based categorization and classification

of web or text documents.

The remainder of this chapter is organized as follows. First, in Section!3.2, we

give the mathematical notations and the definitions of graph and subgraph isomorphisms.

www.manaraa.com

13

If two graphs are isomorphic then there is an exact 1-to-1 matching between them; graph

isomorphism was the basis for early (exact) graph matching methods. The other basic

notation and definitions used in the dissertation will also be given. In Section!3.3, we

explain graph edit distance and how it provides a numeric dissimilarity between two

graphs. In Section!3.4, we describe the maximum common subgraph approach and

explain how it is related to graph edit distance. The state space search method is given in

Section!3.5. In Section!3.6, we describe a probabilistic approach to matching graphs with

errors. In Section!3.7, we recount a method based on distance preservation between graph

nodes. We give some relaxed (sub-optimal) approaches to graph matching in Section!3.8.

In Section!3.9, we give an account of mean and medians of a set of graphs; while not

measurements of graph similarity per se, these concepts are related and very useful in

certain applications. Summary remarks are given in Section!3.10.

3.2 Graph and Subgraph Isomorphism

In this section we describe graph and subgraph isomorphism. Before we give

definitions for isomorphism, we first give definitions for graph and subgraph. A graph G

[13][128] is a 4-tuple: G=(V, E, ", #), where V is a set of nodes (also called vertices),

E$V%V is a set of edges connecting the nodes, ":V&'V is a function labeling the nodes,

and #:V%V&'E is a function labeling the edges ('V and 'E being the sets of labels that

can appear on the nodes and edges, respectively). For brevity, we may abbreviate G as

G=(V,E) by omitting the labeling functions.

A graph G1 = (V1, E1, "1, #1) is a subgraph [9] of a graph G2 = (V2, E2, "2, #2),

denoted G1$G2, if V 1$V2, E 1$E2((V1%V1), "1(x)="2(x))x*V1, and #1((x,y))=#2((x,y))

)(x,y)*E1. Conversely, graph G2 is also called a supergraph of G1.

When we say that two graphs are isomorphic, we mean that the graphs contain the

same number of nodes and there is a direct 1-to-1 correspondence between the nodes in

the two graphs such that the edges between nodes and all labels are preserved. Formally,

a graph G1=(V1,E1,"1,#1)
 and a graph G2=(V2,E2,"2,#2) are said to be isomorphic [9],

denoted G1+G2, if there exists a bijective function f :V1&V2
 such that "1(x)="2(f(x)) for

)x*V1 and #1((x,y))=#2((f(x),f(y))) for)(x,y)*V1%V1. Such a function f is also called a

graph isomorphism between G1 and G2.

There is also the notion of subgraph isomorphism, meaning a graph is isomorphic

to a part of (i.e. a subgraph of) another graph. Given a graph isomorphism f between

graphs G1 and G2 as defined above and another graph G3, if G2$G3 then f is a subgraph

isomorphism [13] between G1 and G3.

It is not known whether graph isomorphism is an NP-complete problem, however

subgraph isomorphism is NP-complete [85][88]. Clearly, as the number of nodes in the

graphs increase the number of possible matchings to be checked increases

combinatorally. A general procedure for determining subgraph isomorphism is given in

[124]. The naïve algorithm for graph isomorphism is to maintain a matrix which indicates

which nodes in each graph are compatible; it can require all possible permutations of

matchings to determine if there is an isomorphism. The procedure in [124] improves the

complexity by pruning the search space. Graph isomorphism tells us only that there exists

an exact match between two graphs (i.e. that they are identical). It does not give us any

www.manaraa.com

14

indication of similarity between graphs, only that they are isomorphic or not. Subgraph

isomorphism tells us if one graph appears as part of another graph. Formally, the

similarity between two graphs G1 and G2, denoted s(G1,G2), is a function that has the

following properties:

(1) 0,s(G1,G2),1

(2) s(G1,G2)=1 & G1+G2

(3) s(G1,G2)=s(G2,G1)

(4) if G1 is more similar to G2 than to G3, then s(G1,G2)-s(G1,G3)

One problem with defining similarity in this way is that it is not clear what case causes

s(G1,G2)=0. This comes from the fact that we have no concept of an exact “opposite” of a

graph. We do, however, have the idea of compliments of graphs. A compliment [22] of a

graph G, denoted G , is the fully connected version of G such that the edges in G have

been removed, E={(u,v)|(u,v).E}.

G G

Figure!3.1. A Graph G and its Compliment G May be Isomorphic

However, a graph may be isomorphic to its compliment (Fig.!3.1), so it does not

necessarily hold that s(G,G)=0. Given this limitation, the usual method of determining

numeric similarity between graphs is to use a distance measure. A distance metric

[13][15][39][127] between two graphs, denoted d(G1,G2), is a function that has the

following properties:

(1) boundary condition: d(G1,G2)-0

(2) identical graphs have zero distance: d(G1,G2)=0 & G1+G2

(3) symmetry: d(G1,G2)=d(G2,G1)

(4) triangle inequality: d(G1,G3),d(G1,G2)+d(G2,G3)

We note that it is possible to transform a similarity measure into a distance measure, for

example by:

!

d(G
1
,G

2
) =1" s(G

1
,G

2
) (3.1)

It can be shown that this equation satisfies the various conditions above for similarity.

Other equations are also possible for changing distance into similarity. Throughout the

www.manaraa.com

15

rest of this dissertation we will see several proposed distance measures, some of which

have been created from a similarity measure.

3.3 Graph Edit Distance

Edit distance is a method that is used to measure the difference between symbolic

data structures such as trees [121] and strings [126]. It is also known as the Levenshtein

distance, from early work in error correcting/detecting codes that allowed insertion and

deletion of symbols [68]. The concept is straightforward. Various operations are defined

on the structures, such as deletion, insertion, and renaming of elements. A cost function is

associated with each operation, and the minimum cost needed to transform one structure

into the other using the operations is the distance between them. Edit distance has also

been applied to graphs, as graph edit distance [108]. The operations in graph edit

distance are insertion, deletion, and re-labeling of nodes and edges.

Formally, an editing matching function (or an error correcting graph matching,

ecgm [9]) between two graphs G1 and G 2 is defined as a bijective mapping function

M:Gx&Gy, where Gx$G1 and Gy$G2. The following six edit operations on the graphs,

which are implied by the mapping M, are also defined:

(1)!If a node v*V1 but v.Vx then we delete node v with cost cnd.

(2)!If a node v*V2 but v.Vy then we insert node v with cost cni.

(3)!If M(vi)=vj
 for vi*Vx and v j*Vy and "1(vx)""2(vy) then we substitute node vi

with node vj with cost cns.

(4)!If an edge e*E1 but e.Ex then we delete edge e with cost ced.

(5)!If an edge e*E2 but e.Ey then we insert edge e with cost cei.

(6)!If M(ei)=ej
 for ei*Ex and ej*Ey and #1(ex)"#2(ey) then we substitute edge ei

with edge ej with cost ces.

We note that there may be several functions M which edit graph G1 into graph G2.

The cost [9][10] of a given an editing function M, denoted /(M), is defined as the sum of

the costs c of all the individual edit operations implied by M. Usually the cost coefficients

c are application dependant. In the error correcting graph matching sense, they can be

related to the probability of the operations (errors) occurring. We assume that the cost

coefficients are non-negative and are invariant of the node or edge upon which they are

applied (i.e. the costs are constant for each operation).

The edit distance between two graphs [9], denoted d(G1,G2), is defined as the cost

of the mapping M that results in the lowest /(M). More formally:

d(G1,G2) =min
!M
(" (M)) (3.2)

Thus the distance between two graphs is the cost of an editing function which transforms

one graph into the other via edit operations and which has the lowest cost among all such

editing functions.

The advantage to the graph edit distance approach is that it is easy to understand

and straightforward to apply. The disadvantage is that the costs for the edit operations (6

www.manaraa.com

16

parameter values) need to be determined for each application. In [10], Bunke gives an

examination of cost functions for graph edit distance. He shows that an infinite number of

equivalent cost classes exist under certain conditions; i.e., it is the ratios between the

different edit costs that differentiates sets of cost functions, rather than the individual cost

values.

3.4 Maximum Common Subgraph / Minimum Common Supergraph Approach

Bunke has shown [9] that there is a direct relationship between graph edit distance

and the maximum common subgraph between two graphs. Specifically, the two are

equivalent under certain restrictions on the cost functions. A graph g is a maximum

common subgraph (mcs) [9] of graphs G1 and G2, denoted mcs(G1,G2), if: (1) g$G1 (2)

g$G2 and (3) there is no other subgraph g0 (g0$G1, g0$G2) such that |g0|>|g|. (Here |g| is

usually taken to mean |V|, i.e. the number of nodes in the graph; it is used to indicate the

“size” of a graph.)

Similarly, there is the complimentary idea of minimum common supergraph. A

graph g is a minimum common supergraph (MCS) [13] of graphs G1 and G2, denoted

MCS(G1,G2), if: (1) G1$g (2) G2$g and (3) there is no other supergraph g0 (G1$g0, G2$g0)
such that |g0|<|g|.

Methods for determining the mcs are given in [69][83]. The general approach is to

create a compatibility graph for the two given graphs, and then find the largest clique

within it. What Bunke has shown is that when computing the editing matching function

based on graph edit distance (Section 3.3), the function with the lowest cost is equivalent

to the maximum common subgraph between the two graphs under certain conditions on

the cost coefficients. This is intuitively appealing, since the maximum common subgraph

is the part of both graphs that is unchanged by deleting or inserting nodes and edges. To

edit graph G1 into graph G2, one only needs to perform the following steps:

(1)!Delete nodes and edges from G1 that don’t appear in mcs(G1,G2)

(2)!Perform any node or edge substitutions

(3)!Add the nodes and edges from G2 that don’t appear in mcs(G1,G2)

Following this observation that the size of the maximum common subgraph is

related to the similarity between two graphs, Bunke and Shearer [15] have introduced a

distance measure based on mcs. They defined the following distance measure:

!

d
MCS
(G

1
,G

2
) =1"

mcs(G
1
,G

2
)

max(G
1
,G

2
)

(3.3)

where max(x,y) is the usual maximum of two numbers x and y, and |...| indicates the size

of a graph (usually taken to be the number of nodes in a graph). This distance measure

has four important properties [13] (see Section!3.2 above). First, it is restricted to

producing a number in the interval [0,1]. Second, the distance is 0 only when the two

graphs are identical. Third, the distance between two graphs is symmetric. Fourth, it

obeys the triangle inequality, which ensures the distance measure behaves in an intuitive

www.manaraa.com

17

way. For example, if we have two dissimilar objects (i.e. there is a large distance between

them) the triangle inequality implies that a third object which is similar (i.e. has a small

distance) to one of those objects must be dissimilar to the other. The advantage of this

approach over the graph edit distance method is that it does not require the determination

of any cost coefficients or other parameters. However, the metric as it is defined in

Eq.!3.3 may not be appropriate for all applications. Thus several other distance measures

based on the size of the maximum common subgraph or minimum common supergraph

have been proposed.

A second distance measure which has been proposed by Wallis et al. [127], based

on the idea of graph union, is:

!

d
WGU

(G
1
,G

2
) =1"

mcs(G
1
,G

2
)

G
1

+ G
2
" mcs(G

1
,G

2
)

(3.4)

By “graph union” we mean that the denominator represents the size of the union of the

two graphs in the set theoretic sense; specifically adding the size of each graph (|G1|+|G2|)

then subtracting the size of their intersection (|mcs(G1,G2)|) leads to the size of the union

(the reader may easily verify this using a Venn diagram). A similar distance measure [9]

which is not normalized to the interval [0,1] is:

dUGU(G1,G2)=|G1|+|G2|–2|mcs(G1,G2)| (3.5)

Fernández and Valiente have proposed a distance measure based on both the

maximum common subgraph and the minimum common supergraph [39]:

dMMCS(G1,G2)=|MCS(G1,G2)|–|mcs(G1,G2)| (3.6)

where MCS(G1,G2) is the minimum common supergraph of graphs G1 and G2.

We can also create a version of this distance measure which is normalized to [0,1]

as follows:

!

d
MMCSN

(G
1
,G

2
) =1"

mcs(G
1
,G

2
)

MCS(G
1
,G

2
)

(3.7)

For brevity we will refer to the distance measures of Eqs.!3.3–3.7 as MCS, WGU, UGU,

MMCS, and MMCSN, respectively.

The distance metrics of Eqs.!3.3 to 3.7 are relatively new, and not much has been

reported regarding their differences in performance for different problem domains. We

will examine this issue in the coming chapters. Also, the graph size |G | is typically

defined simply as the number of nodes in the graph; the edge information is not

(explicitly) captured in these distance measures.

Note that if the condition holds that |MCS(G1,G2)|=|G1|+|G2|–|mcs(G1,G2)|, then

WGU and MMCSN are identical. Similarly, UGU and MMCS are identical. This can be

verified by substituting this definition for |MCS(G1,G2)| into Eqs.!3.6 and 3.7.

www.manaraa.com

18

3.5 State Space Search Approach

In Section!3.3 we described the graph edit distance approach for determining

graph similarity. In order to find the distance we need to find an edit matching function

that has the lowest cost for the given cost coefficients. Depending on the size of the

graphs and the costs associated with the edit operations, finding the lowest cost mapping

may require an exhaustive examination of all possible matchings. If we allow the

possibility of not having to determine the exact distance between graphs, we can perform

other types of sub-optimal search. These searches may not find the global minimum cost

function, but they can be performed more quickly (since we do not need to find all of the

possible matching functions) and still yield acceptable results.

Each matching function we consider becomes a state in a search space. The cost

/(M) for a state M becomes the value we attempt to minimize through the search. M is

actually a graph isomorphism between subgraphs of the two graphs being matched; it

specifies the operations needed to edit one graph into the other graph. Neighbors of a

state M can be determined by adding/deleting nodes and edges to/from these subgraphs

along with their corresponding isomorphic matching; these neighbor states indicate the

creation (or removal) of a single matching between a node or edge in the two graphs (i.e.

it specifies a change in the edit operations). Once the matching is represented in such a

manner, many techniques become available for performing the search, including hill

climbing, genetic algorithms, simulated annealing, and so forth. These searches may not

find the optimal solution, but for some applications (such as graph matching for retrieval

of images or documents) this may not be a concern. These techniques are also sensitive to

initialization and parameter selection, so there can be a wide variety in performance.

For a more detailed description of this technique as well as experimental results

comparing different search and initialization strategies, we refer the reader to [128]. Early

work in this area can be found in [38].

3.6 Probabilistic Approach

In this section we will give a summary of the approach proposed by Wilson and

Hancock [133] which is based on probability theory. In the probabilistic method, we

attempt to match a data graph GD and a stored model graph GM. These graphs are

attributed graphs. An attributed graph [133] is a graph Gy=(V,E,A), where A is a set of

attributes associated with each node, A={ xv
y
,)v*V}.

The attributes in the data graph are to be matched to those in the model graph,

such that the matched nodes have the same or similar attributes. Edges may also have

associated attributes in this model, but they are not considered in this approach. Next, we

have the concept of super-clique of a node. A super-clique [133] of a node i in graph

G=(V,E) is defined as Ci=i1{j|(j,i)*E}. In other words, the super-clique of a node i is the

set of nodes which contains i and all nodes connected to it by edges. We attempt to match

all super-cliques in the data graph with super-cliques in the model graph.

The set of all possible matches between super-clique Ci in the data graph GD and

super-cliques Sj in the model graph GM is called a dictionary [133] and is denoted 2i. To

cope with size differences between the data and model super-cliques we allow dummy

www.manaraa.com

19

(or null) nodes 3 to be inserted into Sj so that both graphs have equal numbers of nodes.

The function matching a node in Ci to a node in Sj is f:VD&VM13. The probability of

matching errors (a node in the data graph is matched to the wrong node in the model

graph) is denoted Pe and the probability of structural errors (a node in the data graph is

matched to a dummy node in the model graph) is denoted P3. Given these definitions,

some assumptions, and through application of Bayes’ rule and other probability theoretic

constructions, Wilson and Hancock arrive at a mathematical description for the

probability of a super-clique matching between two graphs (denoted 4j for super-clique

Cj):

!

P(" j) =
KC j

j

exp{$(keH(" j ,Si) + k% [&(" j ,Si) + '(" j)])}
S j (# j

) (3.8)

where

KCj
= [(1 ! Pe)(1 ! P")]

Cj (3.9)

k
e
= ln

1 ! P
e

P
e

(3.10)

k! =
(1 " P

e
)(1 " P!)

P!
(3.11)

H(4j,Si) is the Hamming distance between the super-clique of the data graph under the

mapping f and the super-clique of the model graph, 5(4j,Si)=|Cj|-|Si| (i.e. the number of

null nodes inserted into Si), and 6(4j) is the number of nodes in Cj which are mapped onto

null nodes in Si. The derivation of Eq.!3.8 is beyond the scope of this chapter, but the

equation contains three parts which are fairly straightforward. First, the part associated

with Eq.!3.9 is the probability of no errors occurring. Second, the part associated with

Eq.!3.10 is concerned with the probability of matching errors occurring. Third, the part

associated with Eq.!3.11 deals with the probability of structural errors occurring. For an

in depth derivation of these equations, please refer to [133].

The authors then go on to derive rules which can be applied to update the

matching function f under three different methods (null-labeling, constraint filtering, and

graph edit operations). The methods use update rules of the form:

f (u) = argmax
v!VM

P(u,v | xu
D, xv

M)

P(u,v)
P("j)

j!Cu

(3.12)

Here P(u,v) indicates the prior probability that node u in the data graph corresponds to

node v in the model graph, while the other probability in the numerator is the conditional

a posteriori probability given the corresponding attributes related with the nodes;

www.manaraa.com

20

approaches to determining these probabilities are application dependant. One method

uses P(4j) as in Eq.!3.8, while the others use the form

P(!j) = e
"k eH (!j , Si)

Si #$ j

% (3.13)

This form is obtained by setting the parameter k3=0, in other words ignoring the effect of

mapping nodes in the data graph to null-labeled nodes in the model graph.

A benefit of this approach is that, under the simpler model of Eq.!3.13, there is

only one parameter that must be adjusted. Another advantage of this framework is that it

can be applied in many situations. For example, an extension of the work [131] deals

with multiple graph matching (compared to data-model graph matching of attributed

graphs) through computations of fuzzy consistency matrices. In [40], Finch et al.

developed an energy function for graph matching based on the probabilistic framework of

this section. A method using this approach for the fitness function in a genetic search for

graph matching is described in [28]. A similar probabilistic framework for hierarchical

graphs is given in [134]. Myers et al. [92] modified the approach described here to

include graph edit distance; the new method achieves better complexity by removing the

need to insert null nodes in the model graph.

3.7 Distance Preservation Approach

In [19], Chartrand et al. describe an approach for graph distance calculation based

on preserving the distance between nodes. The idea comes from the fact that when two

graphs are isomorphic, the distances (meaning in this context the number of edges

traversed) between every pair of nodes are identical in both graphs. Given a graph

G=(V,E), the distance between two nodes x,y*V, denoted dG(x,y), is defined as the

minimum number of edges that need to be traversed when traveling from x to y [19].

Further, the 3-distance [19] between two graphs G1 and G2, denoted d3(G1,G2), is defined

as

d! (G1,G2) = dG1 (x, y) " dG 2
(x,y)

#x#y$V1

% (3.14)

where 3 is a 1-to-1 mapping (but not necessarily an isomorphism) between G1 and G2.

Here |...| is the standard absolute value operation.

If 3 is an isomorphism (i.e. G1+G2), then d3(G1,G2)=0; if G1 and G2 are not

isomorphic, then d3(G1,G2)>0. This leads to a definition of distance between two graphs,

denoted d(G1,G2), which is formally denoted

d(G1,G2) =min
!"
(d" (G1,G2)) (3.15)

where min(…) is the minimum function [19].

www.manaraa.com

21

Here again we see the idea of examining all the possible matching functions (3, in

the notation of the current method; M in the notation of graph edit distance) between two

graphs in order to determine the distance between them. Eq.!3.15 above is directly

comparable to Eq.!3.2 of Section!3.3, even though these two methods have different

theoretical foundations. The authors also go on to show if the graphs meet certain

requirements then we can make some other, less expensive calculations. For example, if

G1 and G2 are connected graphs with equal numbers of nodes, then we can determine the

lower bound on their distance by

d(G1,G2)-|td(G1)-td(G2)| (3.16)

where

!

td(G) = d(u,v)
"u,v#V

$ (3.17)

Or, in other words, the sum of distances between all pairs of nodes in a graph. Further

theoretical contributions related to this approach can be found in [19].

3.8 Relaxation Approaches

As we mentioned in Section!3.2, some early algorithms for determining exact

graph matching (isomorphism) used a matching matrix (M) which indicates the

compatibility of nodes in the two graphs being matched. If the ith row and jth column

element of M, denoted Mij, is a 1, then node i in graph G1 is matched with node j in graph

G2; otherwise there is no match and Mij=0. There are constraints on the matrix M so that

each row has exactly one 1 and no column has more than one 1. Such a representation

and the algorithms applied to it for determining graph matching are straightforward,

however they can require generating all the permutations of possible node matchings over

the matrix.

In order to improve time complexity, we can instead attempt to approximate the

optimal solution by finding good sub-optimal solutions instead. A method that is

sometimes used to do this for graph matching problems is called relaxation (or more

specifically, discrete relaxation). Put simply, discrete relaxation is a method of

transforming a discrete representation (such as the matrix M used for graph matching)

into a continuous representation. Thus we can transform a discrete optimization problem

(exact graph matching using discrete matrix M) into a continuous optimization problem.

Compared to the state space search approach (Section!3.5), relaxation is a non-linear

optimization approach. Gold and Rangarajan [43] applied relaxation to the graph

matching problem. They have posed the problem of attributed graph matching in terms of

an optimization problem:

E = !
1

2
MaiMbj Caibj

(2, r)
+" Mai Cai

(1,s)

s=1

S

#
i=1

V2

#
a=1

V1

#
r =1

R

#
j=1

V2

#
b=1

V1

#
i=1

V2

#
a=1

V1

(3.18)

www.manaraa.com

22

Here M is the matching matrix as before, R is the number of edge types, S is the number

of node types, " is a weighting parameter, and the Cs are compatibility measures between

the edges of the two graphs. The goal is then to minimize the objective function given in

Eq.!3.18. The authors use the graduated assignment algorithm to find an M which

minimizes E. The general procedure of the algorithm is as follows:

(1)!Start with some valid initial matrix M0.

(2)!Determine a first order Taylor expansion of M0 yielding:

Qai = !
"E

"Mai

0
= Mbj

0

j=1

V
2

Caibj
b =1

V
1

(3.19)

(3)!Use relaxation to create a continuous representation of M0

M
ai

0

= e
!Qai (3.20)

where # is a control parameter that is slowly increased as the procedure runs.

(4)!Update the matrix M by a normalization procedure over both rows and

columns.

(5)!Repeat until convergence or iteration limit reached.

Medasani et al. [85] gave a procedure based on fuzzy assignments and relaxation

similar to the method just described. The objective function for this approach is

J(M,C) = Mij

2
f (Cij) +

j=1

V2 +1

!
i=1

V1 +1

! " Mij(1 # Mij)
j=1

V2 +1

!
i=1

V1 +1

! (3.21)

where M is now a fuzzy membership matrix (0,Mij,1) that relates the degree of match

between nodes, C is a compatibility matrix between nodes (rather than edges as above), 7
is a control parameter, and

f (Cij) = e
! "Cij (3.22)

The summations in Eq.!3.21 are under the constraint that (i,j)"(|V1|+1,|V2|+1); the extra

nodes in the graphs are dummy nodes similar to slack variables. The authors then go on

to derive the necessary update equations for M and C in order to minimize J(M,C) and

propose an algorithm which updates these matrices in an alternating fashion.

A drawback to these methods is that they can get stuck in local minima and are

sensitive to initialization. The main benefit, as compared to state space search, is that the

equations and algorithms for these methods are derived directly from the objective

functions as opposed to performing a general search strategy or having to come up with

some heuristics for the search.

www.manaraa.com

23

3.9 Mean and Median of Graphs

In addition to the graph matching approaches we have described, we should also

mention the concepts of mean and median of a set of graphs [50]. These do not explicitly

give us an indication of graph similarity, but are useful in summarizing a group of graphs.

This is useful in applications such as clustering, where we need to represent a group of

graphs by some exemplar graph that represents the cluster.

The mean of two graphs [50] G1 and G2 is a graph g such that:

d(G1,g)=d(G2,g) (3.23)

and

d(G1,G2)=d(G1,g)+d(g,G2) (3.24)

In other words, a mean of two graphs G1 and G2 is a graph g that is equidistant

from G1 and G2 and which is a distance from G1 or G2 equal to half the distance between

G1 and G2. Clearly the mean will depend on the distance functions chosen, and there may

be more than one graph satisfying these conditions; it is also possible that no mean exists

for a given pair of graphs.

The weighted mean of two graphs [12] G1 and G2 is a graph g such that:

d(G1,G)="d(G1,G2) (3.25)

and

d(G1,G2)=" d(G1,G2)+d(g,G2) (3.26)

where 0<"<1. If "=0.5, then the same mean as in Eqs.!3.23 and 3.24 results.

An algorithm for finding the weighted mean of two graphs is given in [12]. The

method involves finding a subset of editing operations (given the lowest cost editing

function between the graphs) for the given " in order to determine the mean graph. In

[14], a theoretical proof is given that any graph g such that mcs(G1,G2)gG1 or

mcs(G1,G2)gG2 is a mean of G1 and G2. Thus the problem becomes finding a graph

that is a supergraph of the maximum common subgraph, but a subgraph of one of the

original graphs. Finally, we have the concept of the median of a set of graphs, which acts

like a representative of the set. The median of a set of graphs S [12] is a graph g*S such

that g has the lowest average distance to all elements in S:

!

g = argmin
"s#S

1

S
d(s,Gi)

i=1

S

$
%

&
'
'

(

)
*
* (3.27)

www.manaraa.com

24

Since g*S, it is straightforward (and relatively inexpensive) to simply compute the

average distance to all graphs for each graph in S. Further, the median of a set of graphs

always exists; it may or may not also be a mean.

3.10 Remarks

In this chapter we have given a survey of the most popular methods for

determining graph similarity that are represented in the literature. Graph isomorphism

finds an exact 1-to-1 matching between identical graphs and was the earliest approach to

graph matching. Unfortunately, it cannot handle inexact graph matching. Graph edit

distance is a popular approach that can deal with inexact matching. It determines the cost

of a sequence of edit operations needed to transform one graph into another; this cost is

the distance between the two graphs. This is a straightforward method, but it requires the

determination of several parameters (the costs of the various edit operations). The size of

the minimum common subgraph of a pair of graphs has been shown to be related to the

graph edit distance. Thus several distance measures that use the size of the minimum

common subrgaph have been proposed. This technique has the advantage that edit costs

do not need to be determined. However, the computation of the minimum common

subgraph is NP-Complete. Another method for calculating graph distance is a distance

preservation approach that determines the minimum number of edges (distances) between

every pair of nodes in each graph. If the graphs are the same, the distances will be

identical for some matching of nodes. Otherwise, there will be a difference indicating the

distance between the graphs. This method is only applicable to graphs with equal

numbers of nodes and does not appear to be widely used.

Methods such as state space search and relaxation have also been applied to the

problem of determining graph similarity. These techniques are often used to provide a

sub-optimal approximation when the original problem is NP-Complete or has a high

potential for combinatorial explosion. For example, state space search can be used if we

represent the matching or edit sequences between graphs as states, and then execute a

search strategy for the state with the lowest cost. This results in a sub-optimal version of

graph edit distance. Relaxation can be used to transform the discrete problem of node

matching between graphs to a continuous representation, which then allows the

application of non-linear optimization methods. This creates a sub-optimal version of the

graph isomorphism approach. Drawbacks of these two methods are that they can be

sensitive to initialization or become trapped at local optima. Another methodology which

has been applied to the problem of matching attributed graphs is a probabilistic approach.

There are several applications and extensions relating to this method, but the procedure is

not straightforward and is only applicable to attributed graphs.

As we have seen, the approaches often have similarities with one another. For

example, probability can be seen not just in the Bayesian approach described in

Section!3.6, but also in the cost functions of graph edit distance (Section!3.2) and some

state space search approaches (Section!3.5). Both state space representations and

relaxation attempt to find good sub-optimal solutions. The idea of a function mapping (or

transforming) one graph to another can be found in isomorphism, graph edit distance,

state space representation, and minimum common subgraph.

www.manaraa.com

25

There are also some open problems in the area of graph similarity. As we

mentioned in Section!3.2, we have no concept of the opposite (inverse, negative, etc.) of a

graph. Thus we have no definition of what it means to have 0 similarity between two

graphs. A second area in need of improvement is the time complexity of some of the

algorithms. These methods rely on solving NP-complete problems or have large potential

for combinatorial explosion. Approximate and sub-optimal solutions have been proposed,

however these are not guaranteed to reach the optimal solution and may require

management of various extra parameters. A third problem: some of the approaches

described in this chapter are applicable to determining similarity between two graphs at a

time only. This is a problem when trying to match a large database of graphs to a single

input graph. Messmer and Bunke [86] propose a method of decomposing large graphs

into smaller components and then organizing these components into a network which

indicates the relationship between the parts in order to deal with this issue. Finally, there

have been no extensive cross-comparison experiments performed between these different

methods. Most experimental results are in the area of stability analysis or in comparing

performance within a certain framework for certain problem areas (e.g. within the state

space search approach).

In the following chapters, we will be most interested in the minimum common

subgraph approaches, as we have discovered methods of overcoming this method’s

shortcomings while retaining its strengths. We will also make use of the graph median. In

the next chapter we describe how web document content can be modeled with graphs.

www.manaraa.com

26

Chapter Four

Graph Models for Web Documents

In the previous chapter we reviewed various graph-theoretical techniques for

determining graph similarity. Of particular interest to the work presented here are the

distance measures based on the computation of the maximum common subgraph of a pair

of graphs (Section!3.4) and the median of a set of graphs (Section!3.9). The distance

measures based on maximum common subgraph (Eqs.!3.3–3.7) are straightforward in the

sense that no space search or parameter value selection is required, but the drawback is

that determining the maximum common subgraph is usually an NP-Complete problem.

However, for the proposed graph representations introduced here, the determination of

the maximum common subgraph can be achieved in polynomial time, as we will see later

in this chapter.

In this chapter we will describe several methods for representing web document

content (or text documents in general) as graphs. These methods are named: standard,

simple, n-distance, n-simple distance, absolute frequency and relative frequency. Each

method is based on examining the terms on each web page and their adjacency. Terms

are extracted by looking for runs of alphabetical characters separated by spaces or other

types of common punctuation marks. Once the terms are extracted, we use several steps

to reduce the number of terms associated with each page to some representative set. This

is done to remove irrelevant terms and to reduce computation time.

4.1 Pre-Processing

When creating a graph model of a web document, we do not model the entire

document as a graph. In order to reduce memory requirements and reduce computation

time, we perform a series of pre-processing steps to arrive at a reduced set of the most

important terms. First, we have a file of approximately 600 stop words, such as “the,”

“and,” and “of,” that contribute little information which we remove if they are present.

We also perform some simple stemming in order to determine those word forms which

should be considered to be identical (e.g. “test” and “tests”). Stemming is often used in

information retrieval to reduce the size of term vectors by conflating those terms which

are considered to be identical after the removal of their suffixes. The most common

stemming algorithm is the one created by Porter [102]. Porter’s algorithm is a fairly

straightforward method that applies simple transformation rules in a series of steps in

order to remove all the suffixes from a term, leaving only the “stem.” Another approach

to stemming besides using rules to remove suffixes is to create a database of words and

their relationships. The WordNet system uses such a database [89]. Lovins’ algorithm

[73] is a mix of both the rule-based and database approaches. In Lovins’ method, a list of

www.manaraa.com

27

approximately 260 suffixes is specified as a mini-database. Associated with each ending

is a condition code that specifies some additional conditions that must be met to allow

removal of the suffix. After the suffix is removed, some rules are applied to the

remaining word to transform it to its final state.

The method of stemming we use is very simple. For each term, we look for plural

forms by adding “-s” or “-es” and check to see if the plural form exists. Similarly for

verbs ending in “-ing” we either add “-ing” (if the word does not end in “e”) or by

removing the trailing in “e” and then adding “-ing.” If we determine that terms are

alternate forms of each other, we conflate to the most frequently occurring form. This

gives us good results; for example, when representing documents about “data mining,”

we conflate to “mining” and not “mine.” After handling these cases, we select the most

frequently occurring terms as nodes for the graph representing the document. This is very

similar to the method described in [66] for extracting the index terms, except that we

perform stemming.

We should also make some mention here of other approaches to reducing the

number of terms that come from the information retrieval field. It has been noted before

that when using the vector space model of information retrieval, performing calculations

on vectors with a large number of elements (terms) can be very time consuming. A

popular information retrieval technique for reducing the number of terms used is latent

semantic indexing (LSI) [32]. This approach uses singular value decomposition, a

statistical dimensionality reduction method, to arrive at a reduced set of terms. LSI can

achieve good results, but it is computationally expensive. It is also possible to simply

drop terms with low weights (called truncation), as computed by some information

retrieval metric, such as term frequency within a document. Experimental results have

shown that reduced vectors (either by LSI or truncation) produce clusterings which are as

good as using the original vectors, and are much faster to compute [118].

Stop word removal, stemming, and LSI are all related to the topic of information

retrieval, or, more specifically, information extraction. The main goal of an information

retrieval system is to provide users with relevant documents based on a query. We should

emphasize that the methods presented in this dissertation are not information retrieval

systems. We do not select documents for retrieval, we are clustering or classifying them

through the application of machine learning techniques. As mentioned in Chapter 2, a

popular model used in information retrieval is the vector space model [107]. In the vector

space model, each document is represented in a Euclidean feature space 8m, where m is

the number of terms (words) used as features. Each feature indicates the number of times

a term appears in a document, or is a weight computed based on some statistical

properties.

4.2 Graph Representations of Web Documents

We have several methods of creating graphs from web documents: standard,

simple, n-distance, n-simple distance, absolute frequency and relative frequency.

Previously, in Section 3.4, we stated that the usual “size” of a graph, |G|, is defined as the

number of nodes in the graph. However, for our particular representations of web

documents it is detrimental to ignore the contribution of the edges, which indicate the

www.manaraa.com

28

number of phrases (term adjacencies) identified in the content. Further, it is possible to

have more than one edge between two nodes for certain representations. Thus we will use

the following definition of graph size for all representations except the frequency

representations (the size of a graph under the frequency representations will be described

in detail below). Formally, the size of a graph G=(V, E, ", #), denoted |G|, is defined as:

 |G|=|V|+|E| (4.1)

Thus we will take the size to be the sum of the number of vertices and edges in the graph.

Under the standard representation method each term after stop word removal and

stemming becomes a vertex in the graph representing that document. Each node is

labeled with the term it represents. Note that we create only a single vertex for each word

even if a word appears more than once in the text. Thus each vertex in the graph

represents a unique word and is labeled with a unique term not used to label any other

node. Second, if word a immediately precedes word b somewhere in a “section” s of the

document, then there is a directed edge from the vertex corresponding to term a to the

vertex corresponding to term b with an edge label s. We take into account sentence

terminating punctuation marks (periods, question marks, and exclamation points) and do

not create an edge when these are present between two words. Sections we have defined

for HTML documents are: title, which contains the text related to the document’s title

and any provided keywords (meta-data); link, which is text that appears in clickable

hyper-links on the document; and text, which comprises any of the readable text in the

document (this includes link text but not title and keyword text). Next, we remove the

most infrequently occurring words on each document, leaving at most m nodes per graph

(m being a user provided parameter). This is similar to the dimensionality reduction

process for vector representations [107]. Finally, we perform a simple stemming method

and conflate terms to the most frequently occurring form by re-labeling nodes and

updating edges as needed. An example of this type of graph representation is given in

Fig.!4.1. The ovals indicate nodes and their corresponding term labels. The edges are

labeled according to title (TI), link (L), or text (TX). The document represented by the

example has the title “YAHOO NEWS”, a link whose text reads “MORE NEWS”, and

text containing “REUTERS NEWS SERVICE REPORTS”. Note there is no restriction

on the form of the graph and that cycles are allowed. This novel document representation

takes into account additional web-related content information (specifically, the web

document section where the terms appear is captured by the edge labels) which is not

done in traditional information retrieval models. As we mentioned in Chapter 2, a

problem with web content mining systems is that they discard or ignore this web-related

information and fall back on the traditional methods that deal only with plain-text

documents. Other methods which take web-related information into account require new

frameworks for dealing with the additional information, but our method allows us to

define different document representations, described below, without changing the basic

data mining algorithms.

www.manaraa.com

29

YAHOO NEWS

SERVICE

MORE

REPORTS REUTERS

TI L

TX

TX

TX

Figure!4.1. Example of a Standard Graph Representation of a Document

NEWS

SERVICE

MORE

REPORTS REUTERS

Figure!4.2. Example of a Simple Graph Representation of a Document

AAA BBB

CCC DDD

1

1

1

2 2

3

Figure 4.3. Example of an n-Distance Graph Representation of a Document

The second type of graph representation we will look at is what we call the simple

representation. It is basically the same as the standard representation, except that we look

at only the visible text on the page (no title or meta-data is examined) and we do not label

the edges between nodes. Thus we ignore the information about the “section” where the

two respective words appear together. An example of this type of representation is given

in Fig.!4.2.

The third type of representation is called the n-distance representation. Under this

model, there is a user-provided parameter, n. Instead of considering only terms

immediately following a given term in a web document, we look up to n terms ahead and

connect the succeeding terms with an edge that is labeled with the distance between them

(unless the words are separated by certain punctuation marks). For example, if we had the

www.manaraa.com

30

following text on a web page, “AAA BBB CCC DDD”, then we would have an edge

from term AAA to term BBB labeled with a 1, an edge from term AAA to term CCC

labeled 2, and so on. The complete graph for this example is shown in Fig.!4.3.

Similar to n-distance, we also have the fourth graph representation, n-simple

distance. This is identical to n-distance, but the edges are not labeled, which means we

only know that the distance between two connected terms is not more than n.

The fifth graph representation is what we call the absolute frequency

representation. This is similar to the simple representation (adjacent words, no section-

related information) but each node and edge is labeled with an additional frequency

measure. For nodes this indicates how many times the associated term appeared in the

web document; for edges, this indicates the number of times the two connected terms

appeared adjacent to each other in the specified order. For this representation we modify

our definition of graph size (Eq.!4.1). Under the absolute frequency representation the

graph size is defined as the total of the node frequencies added to the total of the edge

frequencies. Further, when we compute the maximum common subgraph we take the

minimum frequency element (either node or edge) as the value for the mcs. For example,

if we had two graphs that each had a node A, one with frequency of 10 and the other with

frequency of 20, then node A in the mcs would have frequency of 10.

The final graph representation is the relative frequency representation, which is

the same as the absolute frequency representation but with normalized frequency values

associated with the nodes and edges. The absolute frequency representation uses the total

number of term occurrences (on the nodes) and co-occurrences (edges). A problem with

this representation is that large differences in document size can lead to skewed distances,

similar to the problem encountered when using Euclidean distance with vector

representations. Under the relative frequency representation, instead of associating each

node with the total number of times the corresponding term appears in the document, a

normalized value in [0,1] is assigned by dividing each node frequency value by the

maximum node frequency value that occurs in the graph; a similar procedure is

performed for the edges. Thus each node and edge has a value in [0,1] associated with it,

which indicates the relative frequency of the term (for nodes) or co-occurrence of terms

(for edges).

These forms of knowledge representation are a type of semantic network, where

nodes in the graph are objects and labeled edges indicate the relationships between

objects [106]. The conceptual graph is a type of semantic network sometimes used in

information retrieval [74]. With conceptual graphs, terms or phrases related to documents

appear as nodes. The types of relations (edge labels) include synonym, part-whole,

antonym, and so forth. Conceptual graphs are used to indicate meaning-oriented

relationships between concepts, whereas our method indicates structural relationships that

exist between terms (content) in a web document. Our method of document

representation is somewhat similar to that of directed acyclic word graphs (DAWGs)

[27], which is most commonly used for compact dictionary representation. However, in

our representations nodes represent words rather than letters, we allow for cycles and

multiple edges between nodes, and the edges in our graphs are labeled. It is important to

note that while our representations appear superficially similar to the bigram, trigram, or

N-gram models [122], those are statistically-oriented approaches based on word

www.manaraa.com

31

occurrence probability models. Our method does not require or use the computation of

term probabilities.

4.3 Complexity Analysis

Calculating the distance between two graphs (Eqs.!3.3–3.7) requires the

computation of the maximum common subgraph of the pair of graphs. The determination

of the maximum common subgraph in the general case is known to be an NP-Complete

problem [88]. (Methods for computing the mcs are presented in [69][83].) However, with

our graph representation for documents each node in a graph has a unique label

(representing a unique term) that no other node in the graph has. Thus the maximum

common subgraph, Gmcs, of a pair of graphs, G1 and G2, can be created by the following

procedure:

(1)!Find the nodes Vmcs by determining the subset of node labels that the original

graphs have in common with each other and create a node for each common label.

(2)!Find the edges Emcs by examining all pairs of nodes from step (1) and

introduce edges that connect pairs of nodes in both of the original graphs.

We see that the complexity of this method is O(|V1|!|V2|) for step (1), since we need only

compare each node label from one graph to each node label of the other and determine

whether there is a match or not. Thus the maximum number of comparisons is |V1|!|V2|,

and since each node has a unique label we only need to consider each combination once.

The complexity is O(|Vmcs|
2) for step (2), since we have |Vmcs| nodes and we look at all

combinations of pairs of nodes to determine if an edge should be added between them or

not:

!

V
mcs

2

"

$

%

&
' =

V
mcs
!

V
mcs

(2()!)2!
=
V
mcs

) V
mcs

(1()
2

< V
mcs

2

Thus the overall complexity is O(|V1|!|V2|+|Vmcs|
2) , O(|V |2+|Vmcs|

2) = O (|V |2) if we

substitute V = max(|V1|,|V2|).

www.manaraa.com

32

Chapter Five

The Graph Hierarchy Construction Algorithm for Organizing Web Search Results

5.1 Introduction

In this chapter we will describe our Cluster Hierarchy Construction Algorithm

(CHCA) and Graph Hierarchy Construction Algorithm (GHCA): novel hierarchical

clustering algorithms which we have implemented in a system that clusters search results

obtained from conventional web search engines. We gave our original descriptions of this

system in [110][111]. The basic operation of our search clustering system is to take a user

provided search string, pass it on to a web search engine (or group of engines), examine

the results from those engines, then finally display to the user a group of hierarchically

arranged clusters (topics) related to the search subject. Clusters are displayed by printing

the list of terms associated with the cluster, which are derived from either the vector

(CHCA) or graph (GHCA) representing the cluster. Web pages found by the search

engines are assigned to these clusters. The major benefit of our web content mining

system over conventional search engines is the differentiation of results based on the

related topics and sub-topics. Conventional search engines usually return a large ranked

list that is not organized according to topic. Thus users of our system can focus on only

the specific areas they are interested in when viewing the results, potentially increasing

the speed with which the desired web pages are found. A second benefit is that the

collection of topics and their organization provides the user with additional knowledge

about the search query topic and how it is related to similar topics. Other benefits of our

system include the ability to perform analysis on the full text of the actual documents,

when operated in asynchronous (off-line) mode.

There are a number of different algorithms for performing clustering, including

hierarchical clustering algorithms which create clusters arranged as a hierarchy rather

than partitions. The most well known of these that is widely used for information

retrieval is the agglomerative hierarchical clustering method [107]. We will give some

details about this algorithm and compare it to our method later in the chapter. An

overview of many clustering algorithms and their related issues is given in [58]. More

recent surveys of clustering can be found in [59][90]. However, unlike other clustering

methods, which do not label clusters according to topic, the interesting features of

applying GHCA is not so much the separation of documents into clusters, but rather the

cluster labels and the knowledge representation [76][106] induced by the hierarchy of

topics.

This chapter is organized as follows. In Section!5.2 we give the Cluster Hierarchy

Construction Algorithm, and early vector-based version of GHCA, and describe how it

works in detail. In Section!5.3, we describe the relevant implementation details of the

www.manaraa.com

33

search result processing system we created. In Section!5.4 we give results of using our

system for different query topics as well as comparisons with other similar systems. The

GHCA algorithm, a version of CHCA that works with web documents represented by

graphs rather than vectors, is given in Section!5.5. Some final remarks are presented in

Section!5.6.

5.2 Cluster Hierarchy Construction Algorithm (CHCA)

In this section we give the details of the Cluster Hierarchy Construction

Algorithm (CHCA), an early form of GHCA that was vector-based, and compare it to

similar existing clustering algorithms. We also give a classification of this clustering

method based on its characteristics. First we give a review of the concept of inheritance,

which is the mechanism used by CHCA and GHCA to create the parent/child cluster

relationship.

5.2.1 A Review of Inheritance

Inheritance is a technique of creating new, more specialized entities by defining

them in terms of existing entities. This terminology and method of creating specialization

from existing models comes from the subject object-orientation, which is a software

engineering technique that promotes code re-use. In the context of the current work we

will apply inheritance to clusters for the purpose of creating new, more specialized

clusters that are related to previously existing clusters. Each cluster we create is

associated with a topic relating to a web search and is defined by a list of terms that

indicate the topic’s meaning. When a cluster (called a child cluster or sub-cluster) inherits

from another cluster (called a parent cluster or super-cluster) the child receives the terms

associated with its parent. Usually, the child cluster will also define new terms of its own.

For example, if the parent contains three terms (A, B and C) then its child will have terms

A, B and C as well as new terms (e.g. D and E). It is possible for a cluster to have more

than one parent, which is called multiple inheritance. Clusters that are not defined using

inheritance (i.e. those that have no parents) are called base clusters. Clusters created in

this way form a structure called a hierarchy, where children are connected to their

parents.

Consider the following example which illustrates the concept. We have a base

cluster with a single term: STUDENT. It has two child clusters: UNDERGRADUATE

STUDENT and GRADUATE STUDENT. The cluster GRADUATE STUDENT in turn

has children MASTERS GRADUATE STUDENT and PH.D. GRADUATE STUDENT.

The cluster MASTERS GRADUATE STUDENT is a specialization (i.e. more specific

form) of the cluster GRADUATE STUDENT, which in turn is a specialization of the

cluster STUDENT. Similarly, STUDENT is a generalization (i.e. less specific form) of

the cluster UNDERGRADUATE STUDENT. As we traverse downward through the

hierarchy, the clusters become more specific (specialized) and as we move upward they

become more general. Observe that in many natural languages, such as English, more

specificity is created when more terms are used to describe an entity. Similar to the

example above, we see that, for example, “master’s degree seeking full-time student” is

www.manaraa.com

34

much more specific than simply “student” when describing a person. We make use of this

observation in our search clustering system, as clusters with more terms associated with

them tend to be specializations of more general clusters.

Figure 5.1. Summary of Notation Used in CHCA

5.2.2 Brief Overview of CHCA

Before we describe our algorithm in detail, we present in this sub-section a brief

overview of how CHCA works. The algorithm takes a binary matrix (a table) as input.

The rows of the table correspond to the objects we are clustering. In this case we are

dealing with web pages, but the method is applicable to other domains as well. The

columns correspond to the possible attributes that the objects may have (terms appearing

on the web pages for this particular application). When row i has a value of 1 at column j,

it means that the web page corresponding to i contains term j. From this table, which is a

binary representation of the presence or absence of terms for each web page, we create a

reduced table containing only rows with unique attribute patterns (i.e., duplicate rows are

removed). Using the reduced table, we create a cluster hierarchy by examining each row,

B the set of row vectors remaining to be processed by the algorithm (the “before

set”)

r
c a row vector that is the current candidate for becoming a new cluster

r
d any cluster (row vector) in the “current set” K

 !
r
d any cluster (row vector) in the “done set” D

D the set of row vectors already processed by the algorithm (the “done set”)

K the set of parents of the current cluster candidate
r
c

m the number of columns in the membership table X (the number of terms)

n the number of rows in the membership table X (the number of web pages)
˜ n the number of rows in the reduced membership table X (number of distinct

rows)

r
r a row vector from X, representing the terms appearing on a particular web page

r
x a cluster in the hierarchy created by the algorithm

X the membership table with n rows and m columns
˜
X the reduced membership table, created from X, with m columns and ˜ n rows

MCT a user defined parameter, the Maximum Cluster Threshold, which determines

the maximum number of clusters to create

MPT a user defined parameter, the Minimum Pages Threshold, which determines

the minimum number of pages each cluster can contain

MDT a user defined parameter, the Maximum Distance Threshold, which determines

the maximum difference in terms to consider when adding new clusters

r
!
m

a row vector with m components, all of which are 0 (the empty cluster)

– the difference operation between vectors defined above (in Step!3e only, we

use this operator as a shorthand for the set theoretic removal of an element

from a set)

www.manaraa.com

35

starting with those with the fewest terms (fewest number of 1’s); these will become the

most general clusters in our hierarchy. The row becomes a new cluster in the hierarchy,

and we determine where in the hierarchy the cluster belongs by checking if any of the

clusters we have created so far could be parents of the new cluster. Potential parents of a

cluster are those clusters which contain a subset of the terms of the child cluster. This

comes from the notion of inheritance discussed above. If a cluster has no parent clusters,

it becomes a base cluster. If it does have a parent or parents, it becomes a child cluster of

those clusters which have the most terms in common with it. This process is repeated

until all the rows in the reduced table have been examined or we create a user specified

maximum number of clusters, at which point the initial cluster hierarchy has been

created. The next step in the algorithm is to assign the web pages to clusters in the

hierarchy. In general there will be some similarity comparison between the terms of each

web page (rows in the original table) and the terms associated with each cluster, to

determine which cluster is most suitable for each web page. Once this has been

accomplished, the web pages are clustered hierarchically. In the final step we remove any

clusters with a number of web pages assigned to them that is below a user defined

threshold and re-assign the web pages from those deleted clusters.

5.2.3 CHCA in Detail

We will now introduce the formal notation that will be used in the detailed

description of the CHCA algorithm as well as the algorithm itself. Let
r
a be a bit vector,

which is defined as a vector whose components have two possible values: 0 or 1. In other

words, a binary vector. |
r
a | is defined as the number of 1 bits in the vector

r
a , i.e. the

Hamming Weight. Let

r
a

i
 and

r
a j be x-bit vectors, i.e. bit vectors with x dimensions or

components. Let

r
a

i
•

r
a j be the bitwise (component by component) ANDing of two x-bit

vectors, resulting in a new x-bit vector.

r
a

i
–

r
a j is defined as abs(|

r
a

i
|–|

r
a j |), where abs(…)

is the standard absolute value operation. Let

r
!
x
 be the bit vector of length x with all 0

entries, which is called the empty cluster. Let % be the standard scalar multiplication

operator. Below we present the CHCA algorithm (a summary of notations and variables

used in the algorithm is given in Fig.!5.1):

Step!1.!Given n sets representing n entities (in the context of the current work,

web pages returned by a search engine) each with attributes from a common set with m

elements (the common set of terms appearing on all the pages) we create a binary

membership table X with n rows and m columns. The entries in each cell of the table will

be either 1 or 0. If the element j from the common set is a member of set i, then Xij=1;

otherwise Xij=0. For convenience, each row of the table can be interpreted as an m-bit

vector that we call a “row vector,” denoted by
r
r .

In this first step we are basically creating a data structure (the membership table

X), which will help us describe and perform the algorithm. The table is a binary

representation of the relationships between each web page and each term and is the

primary input to the algorithm. The table will have a number of rows corresponding to

the number of web pages and a number of columns equal to the total number of terms

www.manaraa.com

36

which appear on at least one page. If page i contains the jth term, then at row i and

column j in the membership table (denoted Xij) there will be a 1; otherwise there will be a

0. In the vector space model of information retrieval, this table is called a document–term

matrix or an attribute matrix [48][84]. We use the term “membership table” to clarify that

this table is used for clustering and not for an information retrieval task.

Step!2.!Construct a reduced membership table ˜
X by removing duplicate row

vectors, leaving only ˜ n (,n) distinct row vectors. This new data structure ˜
X will be used

in the next step of the algorithm which actually creates the hierarchy. Since we only

consider each unique row vector, we only need the smaller ˜
X table to create the

hierarchy. This step can be viewed as a pre-processing step which reduces the memory

requirements and running time of the main part of the algorithm.

Step!3.!Create the cluster hierarchy from ˜
X using user provided values for

parameters MCT, MDT, and MPT (which we will describe in detail after the presentation

of the algorithm). The description for the procedure is as follows:

Let B, the “before set,” be the set of row vectors not yet assigned to any cluster. It

initially contains all the row vectors of ˜
X , namely {

r
r
1
,…,

r
r ̃

 n
}. Set D, the “done

set,” is the set of clusters created by the algorithm so far. D is initially set to {

r
!
m

}.

While B"9 (i.e. non-empty, there are still candidates to process) and |D|,MCT+1

do the following steps:

(Step 3a)!Let
r
c be a row vector from set B such that for all

r
a

i
*B, |

r
c |,|

r
a

i
|. In

other words,
r
c , the “candidate vector,” is a row vector from set B which has a minimum

number of terms (1 bits). If there is more than one row with the same minimum number

of terms, select one at random for
r
c .

(Step!3b)!Find a set of clusters K$D such that
r
c –

r
d ,

r
c – !

r
d and

r
c •

r
d =

r
d for all

r
d *K and !

r
d *D. That is, determine the subset K of cluster(s) in D (i.e. in the existing

cluster hierarchy) that are parent(s) of the candidate row vector
r
c . The parent clusters in

set K must satisfy the following two conditions simultaneously:

(1)!Subsethood.!The terms of the row vector(s) in K are subsets of the terms of

row
r
c .

r
c •

r
d =

r
d states that K only consists of those clusters such that the

attributes of the parent clusters (those in K) are a subset of those of the child

cluster. This is in-line with the notion of inheritance: the child cluster has all the

terms of its parents, plus some newly defined terms. Thus a parent cluster’s terms

are a subset of those of its children.

(2)!Minimum Distance.!When using the vector difference operation we defined

above, i.e. abs(|
r
c |–|

r
d |), with vectors that satisfy the subsethood condition just

described, the operation gives the number of terms that differ between parent and

www.manaraa.com

37

child clusters; the number of common terms is given by |
r
c |. The condition

r
c –

r
d ,

r
c – !

r
d means the direct parents of

r
c are those clusters that have the least

“distance” (difference in terms) from the child (or, put another way, the parents of

r
c are those clusters with the most terms in common). This is needed to enforce a

proper ordering among the clusters. For example, consider the following

hierarchy that should nominally be created: cluster a is the parent of cluster b and

cluster b is the parent of cluster c. If we do not enforce some kind of ordering, we

could instead have both cluster b and c as a direct children of a, since by

transitivity cluster a’s attributes are a subset of both b’s and c’s. Further, the

empty cluster

r
!
m

 is by definition a subset (parent) of every cluster. Without this

second condition we could end up with all clusters inheriting from the empty

cluster and becoming base clusters. Using the minimum distance condition we

attach child clusters only to their most similar parent(s).

(Step!3c)!If the minimum of
r
c –

r
d for all

r
d *K , MDT or K contains

r
!
m

 (i.e.
r
c is

a base cluster), then candidate vector
r
c becomes the child of all clusters in K by

inheritance (or multiple inheritance if K has more than one element). Otherwise, skip to

Step!3e. Clusters with

r
!
m

 (the empty cluster) as a parent are base clusters. Each child

cluster inherits the terms from its parent cluster(s) and adds its new terms.

(Step!3d)!D=D1
r
c . In other words, add the row vector corresponding to

r
c to the

set D (the “done set”).

(Step!3e)!B=B–
r
c .That is, remove the row vector corresponding to

r
c from the set

B (the “before set”).

Step!4.!After the loop in Step!3 ends, the initial cluster hierarchy has been created.

However the web pages have not yet been assigned to clusters. For each web page (row)

in the original membership table X, assign the web page to a cluster using the distance

measure:

!
=

"#=
m

j

rjijij XYY
m

irDis
1

)(
1

),((5.1)

where m is the number of terms (number of columns), Xrj is the jth term in row r of the

original membership table, and Yij is the jth term of cluster i in the hierarchy (the vector

corresponding to the cluster). In other words, the distance is the average number of terms

in the cluster i that are missing in the web page r (the “extra” terms are ignored). If all the

cluster terms appear in the page, the distance is zero. If the page contains none of the

terms in the cluster, the distance attains its maximum value (1.0). Otherwise, it takes

some value in [0,1] that is proportional to the compatibility of a web page and a cluster.

The distance of any document to the empty cluster is zero. We assign each web page to

the cluster with the smallest distance. In case of a tie, we prefer clusters with the most

terms (i.e. those that are most specific). If we tie again on that criteria, we choose a

www.manaraa.com

38

cluster from among those tied clusters with the fewest number of assigned web pages to

try to balance out the number of pages per cluster.

Step!5.!Starting with the clusters farthest down in the hierarchy, remove those

clusters that have a number of web pages assigned to them less than MPT. Reassign the

pages from the deleted clusters to the remaining clusters. Repeat this process until no

cluster has fewer than MPT pages. Give children of deleted parents updated parents using

the subsethood and minimum distance criteria given in Step!3b above.

The CHCA algorithm includes 3 user specified parameters to control the results.

The first parameter is a threshold for the maximum number of clusters to create (MCT,

maximum cluster threshold). Without this constraint, CHCA will create a cluster for each

row in the reduced membership table. However, this can be a large number of clusters,

especially if the number of columns is large. So for clarity in interpreting and viewing the

cluster hierarchy we limit the number of clusters to be created. Note the check is for

MCT+1 in Step 3 due to the fact that D contains the empty cluster in addition to the

clusters created and thus its cardinality is always 1 greater than the actual number of

clusters created so far. Another parameter is a maximum distance threshold between

parent and child clusters (MDT, maximum distance threshold). When a new cluster is

added to the hierarchy, it adds a certain number of new terms to its parent’s terms (even if

the cluster is a base cluster and its parent is the empty cluster). Depending on the

application, we may wish to avoid adding those clusters which add too many new terms

in one step (they overspecialize). For example, consider a cluster with 2 terms: A, B.

There are two possible child clusters of this cluster: one with terms A, B, C and one with

terms A, B, D, E, G, H, K. The distance between the former and its parent is 1 term. The

distance between the latter and its parent is 5 terms. By changing this parameter we can

control the size of the “jumps” we wish to allow (base clusters are exempt from the

check). The final parameter is the minimum allowed pages per cluster (MPT, minimum

pages threshold). It may be that some clusters are initially assigned only a few web

pages. The minimum pages threshold allows us to specify the minimum number of pages

a cluster should have. If after creating the hierarchy there are clusters that are assigned

less than this number of pages, we delete those clusters, starting with the clusters at the

lowest levels of the hierarchy. As we delete each cluster that has less than MPT pages, we

reassign the deleted cluster’s web pages using the same method just described in Step 4.

After all the clusters with a number of pages below MPT are deleted, we update the

hierarchy structure by giving parents to orphaned clusters whose original parents were

deleted, using the same method as in Step 3b.

Each cluster has associated with it a bit vector, which indicates its related terms.

When we display the topic (label) of each cluster in the hierarchy to the user, we print out

the list of corresponding terms which have a 1 bit for that cluster’s vector; e.g. if cluster 5

has a 1 bit at columns 17 and 24, we print out the terms associated with columns 17 and

24 when displaying cluster 5. The terms are printed in alphabetical order, since no

ordering information is preserved in the vector representation (i.e. we do not know which

term comes first on a given web page). Later, we will show how GHCA uses graphs to

preserve the ordering information.

www.manaraa.com

39

We will now discuss the computational complexity of the algorithm. n is the

number of rows in the original membership table (the number of web pages) and m is the

number of columns (the total number of terms). Note that the worst case occurs when the

reduced membership table and the original table are identical in size (n= ˜ n). We start with

Step!2, as Step!1 is basically a description of how to prepare the input to CHCA. For

Step!2, the complexity is O(n2m). This is due to the fact that we need to compare each of

the n vectors with the others, and each comparison consists of checking m bits of the

vector. In Step!3a, the complexity of a single iteration is O(nm), since we check m bits

each in at most n vectors in the worst case. For Step 3b, it is O(nm) for a single iteration.

Steps!3c, 3d, and 3e are each O(1). Step!3 is executed n times in the worst case (when

MCT-n), thus the overall complexity for Step!3 in O(n2m). For Step!4, we have O(n2m)

for the worst case, since the distance measure will make comparisons for all m vector

components. For Step!5, we have a maximum of n checks or deletions of clusters (since

the maximum number of clusters in the worst case is n). Each deletion requires the

reassignment of at most O(MPT)=O(1) web pages, which in turn requires O(nm)

computations. So the overall complexity for Step!5 is O(n2m). Thus the time complexity

for CHCA is O(n2m) in the worst case.

Table!5.1. Simple Example to Illustrate Concepts of CHCA

Has High

Performance

Engine

Works on

Land

Can Fly Floats

BOAT 0 0 0 1

SPEED BOAT 1 0 0 1

CAR 0 1 0 0

RACE CAR 1 1 0 0

5.2.4 CHCA: an Example

A simple example is in order to clarify the ideas and terminology of CHCA that

we introduced above. The following is just a general example of creating the hierarchy

and is not necessarily related to processing web search results. For brevity we will omit

the steps which deal with assigning web pages to clusters (Step!4 and Step!5); this is an

example of creating a cluster hierarchy only. For this example, let us consider the domain

of vehicles. The membership table X for this example is given in Table!5.1. Here we have

4 entities (n = 4 rows): BOAT, SPEED BOAT, CAR, and RACE CAR. We also have 4

possible attributes that each entity could have, and thus m = 4 columns. In this case, each

row is unique and thus there is no reduced membership table (it is already reduced).

Assume MCT = 4 and MDT = 4.

We initialize B as the set of row vectors of ˜
X , B={[0001],[1001],[0100],[1100]}

and set D={

r
!
4
}={[0000]}. Next we select the row vector from B with the minimum

Hamming Weight, which is either BOAT [0001] or CAR [0100] since both have a weight

of 1, to be the new candidate vector
r
c . Since there is a tie, we arbitrarily select BOAT, so

r
c =[0001]. After that we determine which clusters in D can be parents of

r
c . So far there

is only element in D, the empty cluster [0000]. Thus BOAT becomes a base cluster since

www.manaraa.com

40

the empty cluster is its parent, and we update B and D by adding
r
c to D and removing it

from B. Note that we skip the distance (MDT) check since
r
c is a base cluster (i.e. K

contains

r
!
4
). B is now {[1001],[0100],[1100]} and D is updated to {[0000],[0001]}. We

repeat the process since B is not empty and |D|=2<MCT+1. We will select CAR [0100]

since it has minimum weight. It will also be a base cluster and now B={[1001],[1100]}

and D={[0000],[0001],[0100]}. Another iteration through the loop, we can select either

SPEED BOAT or RACE CAR from B since their weights are equal at 2. We choose

SPEED BOAT. This time, K will be {[0001]} as [0001] is the subset of [1001] that has

minimum distance: [1001]–[0001]=1 whereas [1001]–[0000]=2. Thus the cluster SPEED

BOAT becomes the child of the cluster BOAT, since the distance (1) is less than MDT

(4). The algorithm performs one more iteration and the resulting cluster hierarchy is

shown in Fig.!5.2. The results seem intuitive: a hierarchy where we move from the

general cases to the specific as we travel downwards has been created.

In Section 5.3, we will describe some important implementation details of our

web search processing system. In order to get good results in our application we have

added another parameter related to pre-processing the input to CHCA. We will discuss

this parameter as well as the values we selected for MCT, MDT , and MPT for our

application in the next section.

BOAT

(base cluster)

RACE CAR

CAR

(base cluster)

SPEED BOAT

Figure!5.2. Cluster Hierarchy Created from the Example in Table!5.1

5.2.5 Examination of CHCA as a Clustering Method

In [58][59], Jain et al. give various characteristics which all clustering methods

have, in order to differentiate and classify them. In this sub-section we will attempt to

classify our clustering algorithm, CHCA, using those criteria. We will also mention

clustering algorithms which are similar to CHCA that have been reported in the literature.

The first criteria is whether CHCA is exclusive or non-exclusive. Exclusive means

each object belongs to exactly one cluster. Non-exclusive means an object can belong to

more than one cluster. As we have described the actual implementation above, CHCA is

exclusive. However, it need not be, as the cluster hierarchy creation process is separate

from the process that assigns web pages to clusters. We could easily assign a page to

more than one cluster, for example, if the distance measure between the page and several

clusters were equal. In fact, the graph-based extension of CHCA, GHCA, which we

www.manaraa.com

41

introduce later is non-exclusive. The best we can say on the subject is that it is

implementation specific: CHCA is neither specifically exclusive or non-exclusive.

The next issue is whether our method is intrinsic or extrinsic. Intrinsic means the

clustering method is unsupervised, whereas extrinsic implies the method learns from

prepared examples. CHCA is clearly an intrinsic method as we do not provide labeled

training examples. The algorithm clusters only on the basis of the data provided. Indeed,

with the Internet comprising nearly every subject imaginable it is intractable to create

training sets for them all.

Another important issue is whether CHCA is a partitional method, or whether it is

hierarchical. Clearly, our method is hierarchical since it creates a cluster hierarchy like

other hierarchical clustering methods. We can compare our method to the well known

agglomerative hierarchical clustering technique that is popular in the information

retrieval literature [48][58][59][90][107]. This method creates a hierarchy of clusters by

starting with a separate cluster for each document and then merging the most similar

clusters to create larger clusters, which in turn become the parents of the merged clusters.

The process is repeated until a tree is created with a single cluster encompassing all the

document at the root. Although our method can produce a hierarchy with different

characteristics than the agglomerative method (e.g. we allow for multiple root nodes and

for multiple inheritance), the graphical interpretation of the resulting hierarchy structure

is the same as in the agglomerative hierarchical method. Nodes in the hierarchy are either

clusters or the objects that are being clustered (web pages). Web pages appear only as

leaf nodes, while the internal nodes are clusters. Links indicate a parent/child relationship

(in the case both nodes are clusters) or a “belongs to” relationship (where one node is a

web page). In our method we allow a child cluster to have more than one parent, unlike

the agglomerative method where every child cluster has exactly one parent. Similarly, if

we allow documents to be linked to more than one cluster we arrive at the non-exclusive

version of the algorithm. There are also divisive hierarchical clustering algorithms. In

those approaches, all objects start out in a single cluster. The idea is to split large clusters

into smaller clusters, forming a hierarchy. However, in the literature the agglomerative

method is most prevalent.

CHCA cannot be classified as either agglomerative or divisive, since we neither

split or join clusters. Instead we should consider CHCA as an iterative method, as it

constructs the hierarchy by adding new clusters one at a time (see [46]). It is important to

note the difference between conventional hierarchical clustering methods and CHCA in

terms of the information provided by the hierarchy that is created. With conventionally

created hierarchies, a measure of similarity (such as a distance measure) is used to

compare the objects in clusters in order to determine when clusters should be merged into

a parent or split into children. This leads to a hierarchy whose characteristic is

differentiation between siblings (children of the same cluster). The information imparted

by such a hierarchy is the series of nested partitionings which indicate the clustering of

the objects and their nesting order. In comparison, CHCA uses the idea of inheritance to

create the parent/child relationship. A child cluster must contain all the attributes of its

parent. This is different from the notion of similarity used in the conventionally created

hierarchies. Thus, the characteristic of a cluster hierarchy created by CHCA is that child

clusters are specializations of their parents. In other words, a child cluster contains all the

www.manaraa.com

42

attributes of its parent in addition to other attributes which distinguish it from its parents

and siblings. Conversely, parent clusters are generalizations of their children: they

contain a subset of the child’s essential attributes. The information conveyed by an

hierarchy created by CHCA includes which clusters are specializations or generalizations

of others (the parent/child relationship), which clusters share a common set of elements

but also have other differences (the sibling relationship), which terms are most general

(those shared between parents and children), and which terms are used to differentiate

and specialize the clusters (those terms found in children but not parents).

A similar method of determining parents through subsets of terms is also used in

the MSEEC system [51]. One of the main differences between that method and CHCA is

that we allow for multiple inheritance (multiple parents) whereas MSEEC uses trees

(single parents). Thus MSEEC must break ties for multiple valid parents, which it does

by selecting the cluster with the most documents assigned. The other phases of MSEEC,

such as controlling the number of clusters and generating their associated terms are quite

different from ours (e.g. we eliminate small clusters and re-assign the documents whereas

MSEEC merges similar clusters). The STC method used in Carrot2 [119] and Grouper

[139] also arranges terms in a tree like structure from general (less terms) to specific

(more terms). However, STC creates a purely partitional clustering, not a hierarchical

one. Collocation networks [79] are another similar method for extracting terms and their

relationships from documents; this method uses frequency of term occurrence and mutual

information (see Section 6.4) to generate a visualization of a document.

A method similar to CHCA, but which has not been used for web mining, is the

hierarchical biclustering HICLAS system described in [31][105]. Like CHCA, HICLAS

performs hierarchical clustering on a matrix with binary entries. It also uses the set

theoretic notion of subsets to order the clusters, just as CHCA does. But there are several

important differences between HICLAS and CHCA. The first difference is that HICLAS

performs a sequence of Boolean decompositions on binary matrices in order to create

cluster hierarchies. Thus HICLAS is more akin to a direct optimization approach, as it is

attempting to optimize the “goodness of fit” of the created hierarchy on the input data

[46]. In contrast, CHCA is an iterative approach, as discussed above. A second difference

is HICLAS creates two separate cluster hierarchies, one for the objects (rows) and one for

the attributes (columns), and then associates clusters in these two hierarchies. CHCA

creates a single cluster hierarchy in terms of the attributes (terms) into which objects

(web pages) are classified. By assigning web pages to clusters (groups of terms) we are in

effect creating a hierarchy incorporating both the terms themselves (the clusters) and the

web pages. The hierarchy of terms (i.e. the cluster hierarchy) is created directly in Step!3

of the algorithm, and the hierarchy of web pages is created indirectly by assigning them

to clusters in Steps!4 and 5. A third difference is that the subset ordering in our approach

is the reverse of the one used in HICLAS. In CHCA, the top level clusters have the

fewest associated attributes (i.e. are most general) while those in the lower levels have

more; in HICLAS, the top level clusters have the most attributes (i.e. are most specific).

CHCA is more in line with the inheritance paradigm, as we discussed above in sub-

section!5.2.1.

In summary, CHCA is an intrinsic, iterative, hierarchical clustering method which

can be either exclusive or non-exclusive (depending on the implementation) and uses the

www.manaraa.com

43

idea of inheritance rather than a traditional measure of similarity to create the cluster

hierarchy.

5.3 Application of CHCA to Search Results Processing

With the explosion of content on the Internet it is becoming increasingly more

difficult for users to find the exact pages containing the information they want to view.

Conventional search engines can return hundreds or thousands of pages for a single

query. Clearly it is not a good use of the user’s time to manually sift through all of the

results [62][139]. Our approach to improving this situation is to perform an unsupervised

hierarchical clustering of the pages returned by a conventional search engine and

organize the topics related to the search in a hierarchy. We note that supervised

classification methods are difficult to use for web searches due to the fact that the number

of topics (clusters) on the web is very large and highly dynamic and such systems require

prior training on a known group of topics. This is one of the reasons we use CHCA for

web search clustering, as it is unsupervised and does not require training examples.

CHCA has the further benefit that it provides several parameters which allow the user to

tailor the characteristics of the hierarchy that is created to a given application. For our

web search processing system, we used these parameters to keep the size of the hierarchy

and number of pages in each cluster reasonable.

In this section we will describe the important implementation details of our search

system.

5.3.1 Asynchronous Search

The system that we have created for processing the search results returned by a

search engine performs what we call asynchronous search. Unlike most conventional

search engines which return a ranked list of documents which match the query within a

few seconds, our system works by handling the search and processing off-line. The user

submits his query and then is immediately free to go and perform other tasks. Once the

search results have been processed the user is notified by e-mail and can view them at his

or her leisure. Even though conventional search engines return results quickly, the user is

often required to spend time browsing through the results, perhaps having to re-query in

order to properly focus the search (e.g. from “Amazon” to “Amazon rain forest”). The

main benefit to performing an asynchronous search over the conventional method is that,

because users do not have to keep an active connection once a request is submitted, the

system can perform some time consuming processing to improve the results since they

are not required right away. The user is not kept waiting for a response and he can

perform whatever other tasks he wishes while the request is being processed. Thus

asynchronous search makes the best use of the user’s time: he or she is not kept waiting

while the results are processed and he or she is able to work with the results more

efficiently when they are available. In addition, the e-mail with a link to the search results

can be saved by the user and revisited at a later time; the results are not lost once the user

exits the browser or switches to a different computer.

www.manaraa.com

44

5.3.2 Implementation, Input Preparation and Pre-processing

The basic operation of our system is as follows. First, the user submits a query

request to the system via a web form. The request is eventually picked up by our system

which in turn queries a standard web search engine (by default we used Google [45]) for

web pages matching the user’s query. Using the description and title information returned

by the search engine or the full text of the web page itself obtained by downloading each

URL, we create a list of terms associated with each page. The list of terms associated

with each page is used to create the membership table (Step!1 in the CHCA algorithm),

which is reduced (Step!2) and passed on to a program that performs the rest of the CHCA

algorithm: it creates a cluster hierarchy (Step!3) and assigns each page to a cluster

(Step!4). Finally the clusters with small numbers of pages are removed (Step!5). The user

is e-mailed with a URL where he can review the results of the algorithm.

By parsing the full text or the description and title of each URL we generate a list

of terms which appear on each web page. This is equivalent to creating a row vector in

the membership table for each accessible URL. However, the number of columns in the

membership table is equal to the number of unique terms encountered over all of the

pages. This can be a huge number (thousands), so to both ease memory requirements and

speed processing we reduce the number of terms (columns) to a fixed threshold, called

MTT (Maximum Term Threshold). The terms that are selected are those that appeared on

the largest number of pages. After examining experimental results, we chose a 30 term

threshold. This essentially makes the time complexity of CHCA for this implementation

O(n2) since m is now a constant (recall that n is the number of web pages and m is the

number of terms). We note here that in our original system we downloaded and parsed

the entire HTML of each page. Using only the description and title “snippets” provided

by the search engine, the system produces results much more quickly.

5.3.3 Selection of Parameters for Web Search

Previously we described the three user defined parameters used in CHCA, MCT,

MDT, and MPT, which are used to change the characteristics of the created hierarchy.

However we have not yet given what values we have used for them in our web

application. We performed many experiments with these parameters (as well as MTT) in

order to determine values which produce reasonable results over a variety of searches.

From our experimental results we chose to limit the number of clusters (MCT) at 100.

This may seem too high, but it turns out the number of clusters created is small (about 10-

20), due to reasons we will explain in a moment. From experimental results, we chose a

distance threshold (MDT) of 2 and chose an MPT of 5 pages per cluster.

By setting the MCT to 100, we are essentially allowing up to 100 clusters to be

created. The distance threshold, MDT, further limits the number of potential clusters. A

larger minimum page per cluster threshold, MPT, causes the hierarchy to be pruned of

more clusters, eventually resulting in usually about 10 to 20 reasonably sized clusters for

our chosen MCT. A plot of the average number of clusters created (taken over the

variation of the other parameters for a fixed set of values) as a function of MCT for three

separate queries (specified in the legend) that illustrates the relationship is given in

www.manaraa.com

45

Fig.!5.3. A similar plot for MPT is given in Fig.!5.4. Note that for these graphs the MCT

assumes a maximum value of 40.

0

2

4

6

8

10

12

14

16

18

20

5 10 15 20 30 40

Maximum Cluster Threshold (MCT)

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
C
lu

s
te

rs
 C

re
a
te

d

(t
a
k
e
n
 o

v
e
r

o
th

e
r

p
a
ra

m
e
te

rs
)

Data Mining

Data Warehouse

Fuzzy Logic

Figure!5.3. Average Number of Clusters Created as a Function of Maximum Cluster

Threshold (MCT) for Three Queries

0

5

10

15

20

25

0 3 7 15

Minimum Pages Threshold (MPT)

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
C
lu

s
te

rs
 C

re
a
te

d
(t

a
k
e
n
 o

v
e
r

o
th

e
r

p
a
ra

m
e
te

rs
)

Data Mining

Data Warehouse

Fuzzy Logic

Figure!5.4. Average Number of Clusters Created as a Function of Minimum Pages

Threshold (MPT) for Three Queries

www.manaraa.com

46

It is worth noting that the parameters, once set to values which produced

acceptable hierarchies, do not need to be changed for each query. In our experiments, the

choice of search engine(s) has a greater interaction with the parameters than the topic of

the query. This is due to the fact that different search engines return varying amounts of

results (pages) as well as varying sizes and types of snippets from which to extract the

term list of each result.

5.4 Examples of Results

In this section we present examples of cluster hierarchies produced by our method

and compare them with the output of other systems which cluster web search results.

Unfortunately, there are some characteristics of CHCA that make it very difficult to

compare its output to “ground truth” clustering. The most problematic is the two-phase

nature of CHCA. There is a cluster hierarchy creation process and a cluster assignment

process. As we will see later, there are methods available for measuring the performance

of the latter process (in a partitional sense) but no techniques are available for the former.

Much of CHCA’s usefulness and novelty comes from the fact that clusters are identified

according to topic labels and that the clusters are arranged in a hierarchy. No data sets or

performance measures exist that address these issues due to the fact that only a manual

comparison by humans using natural language and expert knowledge can suffice. For

example, if ground truth has a cluster labeled “WEB BASED DATA MINING” and

CHCA creates a cluster “WEB MINING,” how “wrong” is this? A second problem is that

when performing a cluster comparison, the number of clusters is usually desired to be the

same as the number of clusters in ground truth. While CHCA provides a mechanism for

limiting the maximum number of clusters, there is no guarantee regarding the actual

number of clusters created due to pruning of small clusters, etc. Finally, the fact that

multiple inheritance is allowed in CHCA makes it unclear how a partitional clustering

would be created by cutting across the hierarchy (as can be done with a dendrogram

created from a typical hierarchical clustering method). Due to the above difficulties, we

have chosen to evaluate CHCA’s performance in our search system by comparing it to

two other similar systems.

5.4.1 Comparison with Grouper

In Fig.!5.5 we give an actual cluster hierarchy that was constructed by CHCA for

the topic “soft computing.” Boxes indicate clusters and arrows indicate inheritance from

parent to child. The terms listed for each cluster are the terms added by that cluster.

Recall that sub-clusters also contain the terms of their parent(s). So, for example, the

cluster NEURO in the figure also contains the terms SOFT, COMPUTING, and FUZZY.

We omit these inherited terms for clarity. In the actual system the terms associated with

each cluster are presented in alphabetical order and not necessarily the order in which

they usually appear, but for the figure we have arranged the terms so that they appear in

the correct order (e.g. SOFT before COMPUTING). The number of pages assigned to

each cluster is also listed at the bottom of each cluster. Note that the clusters created for

this topic and the hierarchy itself are quite reasonable. We should mention that the WSC

www.manaraa.com

47

term used in one of the clusters is the World Conference on Soft Computing and

Engineering Design and Manufacturing, abbreviated to WSC.

SOFT

COMPUTING
(base class)

74 pages

GENETIC

ALGORITHMS
6 pages

RESEARCH
9 pages

RECENT

ADVANCES
7 pages

INTELLIGENT
6 pages

WORKSHOP
8 pages

TECHNOLOGIES
6 pages

FUZZY
7 pages

ARTIFICIAL

INTELLIGENCE
10 pages

SOFTWARE
6 pages

CONFERENCE
6 pages

DESIGN
9 pages

NEURO
10 pages

SYSTEMS
7 pages

LOGIC
8 pages

SYSTEMS
8 pages

WSC
7 pages

Figure!5.5. Cluster Hierarchy Created by CHCA for the Query “Soft Computing”

This cluster hierarchy is a knowledge representation about a domain (i.e. the topic

specified by the query, soft computing) induced from data. So in essence we have

performed a web mining task in creating this knowledge representation. But what exactly

do we gain from the cluster hierarchy? One thing we discover is, given a topic (query

string) as input, what some of the other related topics or sub-topics are. For example, with

SOFT COMPUTING we also see such topics as ARTIFICIAL INTELLIGENCE and

GENETIC ALGORITHMS. The structure of the hierarchy gives us additional

www.manaraa.com

48

knowledge. We see, for example, that the cluster corresponding to FUZZY has children

such as LOGIC (fuzzy logic) and NEURO (as in neuro-fuzzy). So these clusters and the

pages in them are specializations of the topic FUZZY relating to the sub-topics of fuzzy

logic and neuro-fuzzy soft computing, respectively. Conversely, pages of a parent cluster

are generalizations of those in the child clusters. Also, sibling clusters (clusters with

common parents) are topics related by their parents (e.g. RECENT ADVANCES and

RESEARCH).

Table 5.2. Results of the Grouper Custom System for the Query “Soft Computing”

Cluster Title Number of Pages in Cluster

soft computing strategies in life sciences 15

fuzzy logic 40

mammut soft computing ag banking software 12

genetic algorithm 19

artificial intelligence 20

probabilistic reasoning 14

premier on-line event on soft computing and it 5

uncertainty and partial truth 6

partial truth to achieve tractability 4

fuzzy set 12

original paper 9

data mining 8

takeshi furuhashi 6

lotfi zadeh 9

rudolf kruse 6

neuronale netze 5

drug discovery 6

computational intelligence 8

evolutionary computation 6

fuzzy control 10

pattern recognition 5

current research 7

rapport with reality 4

recent advances 5

technische universit 4

tolerance for imprecision 5

nature biotechnology 4

consortium of methodologies 4

chaos theory 5

initiative in soft computing 8

machine intelligence 6

on-line tutorial 4

drug design 5

machine learning 5

all others 83

Like our system, the system of Zamir and Etzioni (called Grouper) also clusters

web search results. Grouper uses snippets returned by search engines rather than

examining the entire contents of the web documents, so we similarly used snippets with

our system for the experiments in this section. One of the main differences with our

method is that the clusters created by Grouper’s STC algorithm are not arranged in a

hierarchy. We tried several searches using the latest publicly available version of the

Grouper system (Grouper Custom) [49] and found that our system compared favorably

with it. To try and make a fair comparison, we performed a search for the same topic

(soft computing) and retrieved a similar number of results (186 with Grouper compared

www.manaraa.com

49

to 194 for our system). We also used the best quality search option that is provided by

Grouper. The created clusters and the number of pages in each are given in Table!5.2.

Note that Grouper allows pages to belong to more than one cluster (non-exclusive

clustering), which is why the total is greater than 186. The results are presented in their

original order. Although the sets of pages used by the two systems are not identical, it is

not unreasonable to informally compare the clusters created by Grouper (Table!5.2) to the

cluster hierarchy created by our system (Fig.!5.5). Both systems produce mostly

reasonable clusters, such as GENETIC ALGORITHM(S) and ARTIFICIAL

INTELLIGENCE. The major difference is that our system also illustrates the

relationships between these clusters. Our system also produces fewer, larger clusters due

to the parameters we selected. Grouper seemingly produces too many clusters overall (35

created by Grouper vs. 17 for our system), and some of those clusters appear irrelevant

(such as DRUG DESIGN or RAPPORT WITH REALITY). The results of a search for

the topic “data compression” are given for our system and Grouper in Fig.!5.6 and

Table!5.3, respectively. Like the results for the other topic, our system creates fewer (35

vs. 10 clusters), larger, and generally more relevant clusters than Grouper.

DATA

COMPRESSION
(base class)

116 pages

TECHNIQUES
6 pages

ALGORITHMS
7 pages

PROGRAM
7 pages

LIBRARY
7 pages

IMAGE
9 pages

NETWORK
9 pages

INFORMATION
9 pages

INTRODUCTION
10 pages

COMPUTERS

SOFTWARE
13 pages

Figure!5.6. Cluster Hierarchy Created by CHCA for the Query “Data
Compression”

www.manaraa.com

50

Table!5.3. Results of the Grouper Custom System for the Query “Data
Compression”

Cluster Title Number of Pages in Cluster

data compression asp component control library bv 5

mitsuharu arimura bookmark on source data coding 4

arithmetic coding 12

mark nelson 8

mitsuhara arimura 7

huffman coding 10

video teleconference 8

audio teleconference 8

compression techniques 17

submit a url 5

dobb journal 5

compression algorithm 20

source code 7

calgary corpus 4

mobile computing 4

compression ratio 9

webopedia definition and link 4

teleconference planner 4

teleconference phones 4

signal processing 4

teleconference calling 4

lossy compression 9

teleconference service 4

fixed length 4

introduction to data 11

fewer bit 4

teleconference equipment 4

teleconference center 4

teleconference services 4

adaptive huffman 4

image compression 11

data compression library 8

original string 4

lossless data 9

all others 103

5.4.2 Comparison with Vivísimo

We also compared our system with the commercial Vivísimo system [125], which

performs a hierarchical clustering of web search results. We submitted the same 10 query

strings to each system (shown in Table!5.4) and compared the resulting cluster

hierarchies. The query strings reflect a wide range of topics, from air quality modeling to

wedding photography (they were selected from search strings submitted by users of our

system). The amount of pages clustered were roughly comparable in each case; for these

experiments we used AltaVista with our system, which returned up to 200 pages.

Vivísimo also returned a maximum of 200 pages from AltaVista (using the customized

search option). Both systems removed duplicate results and worked with snippets (title

and description) provided by the search engines in lieu of the full text of the pages. We

evaluated the systems by four measurements: 1. total number of clusters created, 2.

maximum hierarchy depth, 3. number of base clusters, and 4. average number of children

of base clusters. The results are presented in Table!5.5. In the table, the value in the left

column (C) represents our system using CHCA, and the value in the right column (V)

www.manaraa.com

51

represents Vivísimo. Vivísimo allows the user to expand the initial hierarchy by clicking

on a “More…” link. In our evaluation, we consider only the clusters that are initially

displayed by the system. Further, Vivísimo includes unspecified clusters entitled “Other

Topics”; these clusters were ignored.

Table!5.4. List of Query Strings Used for Comparison

Query String

#1 nuclear medicine

#2 linux

#3 wedding photography

#4 nursery system

#5 pentium processor

#6 human genome project

#7 scuba diving equipment

#8 stamp collection

#9 voice recognition

#10 air quality modeling

Table 5.5. Summary of Comparison for 10 Searches (C: CHCA, V: Vivísimo)

Query Number of

clusters

Maximum

depth

Number of

base clusters

Avg. children/base

cluster

C V C V C V C V

#1 18 30 2 3 1 1 16 10

#2 15 18 2 2 1 1 12 10

#3 17 35 2 4 1 1 15 10

#4 17 35 2 2 10 1 0.8 10

#5 15 29 2 3 2 1 3.5 10

#6 14 51 1 3 1 1 13 10

#7 15 22 3 2 3 1 0.66 10

#8 9 25 2 2 1 1 3 10

#9 17 28 2 3 1 1 14 10

#10 12 48 3 3 5 1 0.6 10

Mean 14.9 32.1 2.1 2.7 2.6 1.0 7.86 10.0

We can make the following observations from the data and our personal experience from

using the system:

(1)!Vivísimo creates more clusters than our system. This can be observed directly

from the total number of clusters for each query, as well as from the mean. The

more clusters in the hierarchy, the more difficult it is to browse.

(2)!Vivísimo always created a single base cluster, which corresponds to the topic

specified by the search string. In contrast, our method creates base clusters as

appropriate to each search (i.e. the search topic is not necessarily the root).

Consider query #7, which is “scuba diving equipment.” Our system created 3 base

clusters for this query: “scuba,” “diving,” and “equipment” and then created the

www.manaraa.com

52

necessary combinations (e.g. “scuba diving”) though multiple inheritance. This

makes sense since the search returned, for example, pages that contained the term

“diving” but not the terms “scuba” and “diving” together. For query #4, “nursery

system,” our system created ten base clusters. This seems reasonable given the

rather vague nature of the query; search engines returned pages on everything

from health care to plants for this query. Thus, our system does not force the

search topic to appear at the root (although it can appear at the root when

appropriate, e.g. query #2 “linux”), which allows for the investigation of more

general topics as well as those that are more specific.

(3)!Vivísimo created a fairly constant number of children for base clusters. Recall

that we did not examine all the results for Vivísimo, only the initially displayed

default results. This appears to limit the number of second level clusters to a

constant number.

(4)!Comparing the average maximum depths from each system, we see that our

method creates a shallower hierarchy than Vivísimo. Thus less “digging” to reach

clusters at lower levels is required for our system.

(5)!By subtracting the number of base clusters and number of children of base

clusters (computed by multiplying the number of base cluster by the average

number of children of base clusters) from the total number of clusters, we can

derive the number of clusters residing at the lower hierarchy levels. By comparing

this number with the total number of clusters and the hierarchy depth, we see that

our system often placed most of the clusters at the top two levels (base clusters

and their children). On the other hand, Vivísimo had many clusters residing at the

lower levels, leading to hierarchies that often produced many branches and that

were very wide at the lower levels. Such hierarchies are difficult to examine since

they either require much “digging” and backtracking (in the depth-first sense) or

they require displaying increasingly many nodes at each level (in the breadth-first

sense).

(6)!Vivísimo’s hierarchies were much slower to browse than those of our system.

This is probably due to the fact that Vivísimo includes the pages themselves in the

hierarchy display, leading to longer loading and rendering times. Our system

includes only clusters in the hierarchy; pages are displayed separately.

5.5 Graph Hierarchy Construction Algorithm (GHCA)

In this section, we describe a graph-based version of CHCA, GHCA. GHCA

performs clustering using graph representations of web documents rather than the binary

term-vector representations we previously used for CHCA. Both the input (the web

documents) and the output (the clusters) are represented by graphs. In sub-section!5.5.1

we give an explanation of the user provided algorithm parameters. In sub-section!5.5.2

we describe the pre-processing used to transform the web documents into their graph

www.manaraa.com

53

representations. We present the Graph Hierarchy Construction Algorithm (GHCA) in

detail in sub-section!5.5.3.

Figure 5.7. Pre-processing Phase of GHCA

5.5.1 Parameters

GHCA uses five user-provided parameters to control the properties of the

resulting cluster hierarchy. Most of these are identical to the CHCA parameters, however

the updated version of our system that utilizes GHCA allows the user many new options

(PP.1)!Given the set of relevant web pages provided by search engines, download the full text of each

page.

(PP.2)!Parse the text for each web document and create page graphs using the standard representation

(see Section 4.2).

(PP.3)!Optionally create separate small keyword graphs for each page based only on the title web

document section as described in Section 4.2 (this is the default option).

(PP.4)!Optionally remove stop words (e.g. “is”, “the”, etc.) from the page graphs and the keyword

graphs by deleting the nodes corresponding to the stop words and their incident edges (default option,

see Section 4.1).

(PP.5)!Optionally perform stemming by conflating grammatical variants of terms to the most

commonly occurring form (default option, see Section 4.1).

(PP.6)!Perform dimensionality reduction using one of the following methods:

(a)!Reduce the set of possible terms to the MTT terms which appear on the most pages; delete

nodes not in this set and their incident edges from all graphs (default method).

(b)!Reduce each graph to the MTT most frequently occurring terms on that page; delete the

infrequently occurring nodes and their incident edges.

(PP.7)!Optionally remove edges from the page graphs which occur infrequently (i.e., less than 3 times);

the default is not to remove edges. Note that edges will probably occur infrequently in keyword graphs,

so we do not apply this option when using keyword graphs.

(PP.8)!Add either the keyword graphs (the default) or the page graphs to the set of candidate graphs.

(PP.9)!Optionally generate the maximum common subgraphs of each possible pair of candidate graphs,

and add them to the set of candidate graphs (default option).

(PP.10)!Optionally, for each candidate graph, if the graph contains at least one edge (meaning the graph

contains a phrase), delete nodes with no incident edges (i.e. extraneous isolated nodes) from that graph,

since phrases usually convey more useful information than single-word terms. If there are no phrases,

the graph is left as-is (default option).

(PP.11)!Remove all duplicate graphs from the set of candidate graphs, leaving only a set of unique

graphs. This means that two distinct documents represented by identical graphs are assumed to be

related to the same topic.

www.manaraa.com

54

relating to these parameters. The algorithm parameters are given below, along with their

default values (which were determined experimentally across a variety of different

searches):

(1) MTT (Maximum Terms Threshold). This parameter restricts the maximum

number of vertices in the resulting graph representations of documents. We have

two options. We can use the MTT most frequently occurring terms on each page

(where frequency means the number of occurrences on a given page). Or we can

create a common set of the MTT most frequently occurring terms across all pages

(where frequency means the number of pages where a term occurs at least once).

The default option is to use the 30 most frequently occurring terms across all

pages.

(2) MPT (Minimum Pages Threshold). This parameter is used in the pruning

section of GHCA by removing clusters that have fewer than MPT native pages

assigned to them. The default value is 3.

(3) MDT (Maximum Distance Threshold). This parameter is used for restricting

the growth of the hierarchy. We do not add clusters to the hierarchy whose

difference in size from their parent(s) is greater than MDT. As we mentioned in

Chapter!4, the size of a graph is defined as the sum of the number of edges and

vertices in the graph. The default value of MDT is 2, which is large enough to

allow the addition of one new term to an existing phrase (i.e. one node and one

edge).

(4) MCT (Maximum Cluster Threshold). This parameter is used to limit the

overall size of the hierarchy. We stop the hierarchy construction phase of the

algorithm once it has created MCT clusters or we have no candidate graphs

remaining. The default value is 50.

(5) BCST (Base Cluster Size Threshold). This parameter is used to limit the size

of base (top level) clusters. We do not create a new base cluster if its size exceeds

BCST. The default value of BCST is 3. The default value is large enough to admit

a two term phrase (i.e. two nodes connected by an edge) as a base cluster.

5.5.2 Graph Creation and Pre-processing

The general procedure for creating graphs from web documents and pre-

processing is described in Fig.!5.7. The procedure of creating graphs from web

documents is similar to what we described in Chapter 4, however some steps are now

optional (such as stemming) and we create optionally a separate set of graphs based only

the title section information (see Section 4.2).

www.manaraa.com

55

Figure 5.8. Initial Hierarchy Construction Phase of GHCA

5.5.3 Graph Hierarchy Construction Algorithm (GHCA)

Given the set of candidate graphs from the previous section, we can perform the

Graph Hierarchy Construction Algorithm. The basic steps are initial hierarchy

construction (Fig.!5.8), document assignment (Fig.!5.9), and bottom-up cluster pruning

(Fig.!5.10).

Figure!5.9. Document Assignment Phase of GHCA

The initial hierarchy construction procedure is given in Fig.!5.8. The purpose of

this phase of GHCA is it create the initial cluster hierarchy. As mentioned in Chapter 4,

the definition of size given in step IHC.1 is necessary because it may be the case that we

have, for example, a cluster represented by a graph with 2 vertices and no edges (e.g.

DATA, MINING) and a cluster represented by a graph with 2 vertices and one edge

(DATA&MINING). The first cluster represents pages where the terms “data” and

“mining” occur with no particular relationship on the same web document; the second

(IHC.1)!Find the candidate graph with minimum size, where the size of a graph G, |G|, is defined as the

sum of the number of edges and vertices in the graph, |V|+|E|, and select it to be the cluster candidate.

In case of a tie, select one of the graphs at random.

(IHC.2)!Determine the possible parents of the cluster candidate in the hierarchy, such that any parents

of the cluster candidate are subgraphs of the cluster candidate and the distance, defined as the difference

in size between the two graphs, is minimum.

(IHC.3)!If the cluster candidate is a base cluster (it has no parents in step (IHC.2)) and the size of the

graph is less than or equal to BCST, add the cluster candidate as a base cluster in the hierarchy.

(IHC.4)!If the cluster candidate is not a base cluster and the difference in size between the cluster

candidate and its parent(s) is less than or equal to MDT, add the cluster candidate to the hierarchy.

(IHC.5)!Remove the cluster candidate from the set of candidate graphs.

(IHC.6)!While the number of clusters in the hierarchy is less than MCT and there are still candidate

graphs remaining, go to step (IHC.1); otherwise, proceed to the initial document assignment phase.

For every page represented in the set of page graphs, determine what clusters in the hierarchy have the

smallest distance according to the MCS distance measure (Eq.!3.3).

(DA.1)!If the minimum distance is 1, skip this page (go back to step DA.1).

(DA.2)!Assign the page to the cluster(s) which have minimum distance as a native page.

(DA.3)!Also assign the page to super-clusters above the clusters selected in step (DA.2) in the hierarchy

as an inherited page; continue to propagate the inherited page up the hierarchy from child to parent

until a base cluster is reached.

www.manaraa.com

56

represents pages where the phrase “data mining” occurs (i.e., there is a more specific

relationship, the terms appear adjacent to each other in the specified order). If we

consider only the number of nodes in computing the size of the graph, these clusters are

considered to be equally similar when calculating the distance. This is undesirable

because the choice of assignment becomes arbitrary when clearly each graph represents a

different concept.

After initial hierarchy construction, the document assignment phase of GHCA

(Fig.!5.9) is performed. The purpose of this phase is to assign web documents to the

clusters created in the initial hierarchy construction phase. The previous version of our

system (described above in sub-section 5.2.3) assigned each web page to only one cluster

(exclusive assignment), using tie breaking methods when the distance measures for two

or more clusters were equal. We felt this was unnecessarily restrictive, so we have

allowed non-exclusive assignment of pages. In addition, base clusters in the induced

hierarchy of graphs will have more pages (native + inherited) assigned to them than their

descendant clusters; the clusters in the bottom level will represent the most specific topics

described by the fewest number of pages.

Figure!5.10. Cluster Pruning Phase of GHCA

After initial document assignment, the last phase of GHCA is bottom-up cluster

pruning (Fig.!5.10). This removes clusters with less than MPT web documents assigned

to them, starting with the lowest level clusters.

Figure!5.11. Results Display Methodology for GHCA

We use a different method of displaying the terms associated with each cluster

than we used for vector-based CHCA. Since the graphs used in GHCA preserve the term

ordering information, we can display phrases (groups of related terms) to the user instead

(CP.1)!Starting with the lowest level in the hierarchy, delete all clusters at that level from the hierarchy

that have less than MPT native pages assigned to them.

(CP.2)!Given the new hierarchy, re-assign all the pages from the deleted clusters as described above in

steps (DA.1) to (DA.3).

(CP.3)!Fix orphaned clusters by updating the parent information as in step (IHC.2) of the initial

hierarchy construction.

(CP.4)!Repeat steps (CP.1) to (CP.3) going up one level in the hierarchy each iteration until the top

level is reached.

(R.1)!For each cluster, first display the longest simple paths (acyclic paths not contained in any other

acyclic paths) in the graph as ordered phrases; next show any isolated nodes as single terms.

(R.2)!If the cluster is not a base cluster, show only those phrases or terms which are specific to the

graph (i.e., those not displayed for a parent cluster).

www.manaraa.com

57

of an alphabetical list of single terms. In order to display the phrases and terms

represented by each cluster graph to the user, we use the approach described in Fig.!5.11.

For brevity in the output we omit the edge labeling information about the document

sections where the terms or phrases were found.

Note that the first three phases above, initial hierarchy construction, initial

document assignment, and bottom-up cluster pruning, are directly analogous to Steps 3,

4, and 5, respectively, in CHCA. The following straightforward extensions are performed

to go from binary vector-based CHCA to graph-based GHCA:

(1)!Instead of the size being determined by the Hamming Weight (the number of 1

bits), the size is determined by the number of nodes and edges in a graph.

(2)!Instead of using a bitwise AND operation to determine the subset relationship,

we determine if one graph is a subgraph of another directly through the subgraph

relationship.

(3)!The distance measure used to assign pages to clusters is now Eq.!3.3 rather

than Eq.!5.1.

Although there are other changes between CHCA and GHCA as presented here, those are

new options or refinements to the search system (such as allowing non-exclusive

assignments) rather than changes to the fundamental CHCA algorithm itself. With only

the three changes listed above we were able extend the algorithm to work with more

complex graphs rather than the simpler bit vectors we used previously.

5.5.4 GHCA Examples

In Fig.!5.12 we show the results of performing four different searches for our

system with GHCA using the default parameter values and options; the searches are for

“data mining” (top left), “soft computing” (top right), “graph theory” (bottom left), and

“scuba diving equipment” (bottom right). The total number of pages assigned to each

cluster is shown in parentheses. Sub-clusters are indicated by indentation. The phrases

and terms associated with each cluster are determined using steps (R.1) and (R.2) in

Fig.!5.11 above. For example, the first cluster in the “data mining” hierarchy is displayed

as the phrase “data management”, meaning the graph contained two nodes (“data” and

“management”) and an edge from “data” to “management.” Distinct phrases or terms are

separated by commas. Note that this is an improvement over the case of CHCA, which

contained no term ordering or phrase information. Under CHCA, which ordered terms for

each cluster alphabetically, we would have clusters identified as “computing soft” or

“diving equipment scuba.” With GHCA the correct order can be preserved: “soft

computing” and “scuba diving equipment.” GHCA also allows differentiation of clusters

based on the phrase information; e.g. “DATA, MINING” is separate cluster from “DATA

MINING.”

www.manaraa.com

58

Figure 5.12. Examples of Cluster Hierarchies Generated by GHCA

5.6 Comments

In this chapter we presented a system designed to better organize the results

returned by conventional web search engines. Novel hierarchical clustering algorithms

called CHCA (Cluster Hierarchy Construction Algorithm) and GHCA (Graph Hierarchy

Construction Algorithm) were employed to hierarchically cluster web pages by topic

using the concept of inheritance. The cluster hierarchy generated by the algorithm can be

viewed as a knowledge representation about the domain that has been induced from the

web content data. In other words, CHCA and GHCA are web mining algorithms. By

creating a cluster hierarchy from the results we are able to cluster web pages as well as

determine relationships between the topics related to the search. GHCA modeled web

pages as graphs, and worked directly on these representations when clustering. The

additional information included ordered phrases; CHCA’s vector representation had only

alphabetically ordered lists of atomic terms. This allows for better differentiation among

www.manaraa.com

59

the clusters (i.e. whether the terms appear together as a phrase, indicating a specific

relationship) and for more coherent output of cluster names (the term ordering

information is preserved).

The results (the cluster hierarchies) from actual searches show how our system

differs from other web search clustering systems. Here is a summary of the main

contributions of this chapter:

(1)!As shown by the examples of the system output and comparisons with similar

systems, our system produces a reasonable and useful clustering of the web pages.

Further, the behavior of our system is in-line with clusterings of web pages

produced manually by humans when comparing full text processing to snippets.

(2)!CHCA and GHCA include several parameters which allow us to direct the

characteristics of the cluster hierarchy. This is important since other hierarchical

clustering methods, such as the popular agglomerative hierarchical clustering

algorithm, can produce very large trees which may be difficult to view and

browse. With proper parameters we can achieve a hierarchy of a manageable

width and depth. There are versions of the agglomerative hierarchical method that

include stopping criteria, but their parameters are topic sensitive [139]. In

contrast, our methods’ parameters are more sensitive to the search engines used

and not to the topics being searched for. We found that when using different

search engines we needed to modify the parameters slightly to account for the

number of pages returned and the size and content of the snippets returned by the

engine. However, once we arrived at a reasonable set of parameter values for a

particular search engine, the results tended to be fairly uniform across searches.

(3)!We produce not just a series of nested partitionings, as in conventional

hierarchical clustering methods, but a clustering with relationships that include

generalization (child to parent), specialization (parent to child) and similarity

(between siblings). As a result, we can make statements such as when a

parent/child relationship exists, the topic of the child cluster is a specialization of

the parent cluster and conversely the topic of the parent cluster is a generalization

of the child cluster. Sibling clusters that share common parents are related by the

topic of their common parent, i.e. they are different specializations of the same

cluster. Hierarchies created with conventional hierarchical clustering methods

such as the agglomerative and divisive approaches only give us an indication of

which clusters include the objects of other clusters (the parent/child relationship)

and the similarity between clusters (the sibling relationship). Further, with CHCA

and GHCA we are also provided with knowledge of which terms and phrases are

used to differentiate and specialize clusters. This gives us an indication of which

terms or phrases are most general and how they are used to cause specialization.

Such a cluster hierarchy is related to knowledge representation models like frames

and semantic networks and by inducing the knowledge from the web content data

in effect a web content mining task has been performed.

www.manaraa.com

60

(4)!We do not use any kind of term frequency per document measure except for

pre-processing and dimensionality reduction. Thus those pages with intentionally

skewed term frequencies intended to improve their ranking are treated the same as

well behaved documents.

(5)!CHCA and GHCA are applicable to regular text documents in addition to

hypertext (linked) documents. Some web mining approaches only consider links

(web structure) and thus are not applicable to text documents.

(6)!Our system allows asynchronous search. This permits the user to perform

other tasks while his/her request is processed and makes possible the examination

of the original full content of web pages rather than the snippets stored by search

engines, which may be “stale” (out of date).

After observing the straightforward and simple extensions that allowed the use of web

content data represented by graphs instead of vectors in our clustering algorithm, we

turned our attention to performing similar extensions with other, well-known machine

learning methods for the purpose of web content mining. The results of these

investigations begin with the next chapter.

www.manaraa.com

61

Chapter Six

A Graph-Theoretical Extension of the k-Means Clustering Algorithm

6.1 Introduction

In this chapter we will introduce a new method of clustering where the data to be

clustered will be represented by graphs instead of vectors or other models. Specifically,

we will extend the classical k-means clustering algorithm to work with graphs that

represent web documents. We wish to use graphs because they can allow us to retain

information which is often discarded in simpler models. For example, when representing

web documents by graphs instead of vectors we can keep information such as the term

appearance order or where in the document the terms appear. This in turn can possibly

lead to an improvement in clustering quality, and we will investigate this experimentally.

In this chapter we will describe the three data sets we will use in our experiments and the

measures we will use for comparing clustering performance.

Clustering with graphs is well established in the literature. However, the

traditional paradigm in those methods has been to treat the entire clustering problem as a

graph: nodes represent the items to be clustered and weights on edges connecting two

nodes indicate the distance (dissimilarity) between the objects the nodes represent. The

usual procedure is to create a minimum spanning tree of the graph and then remove the

remaining edges with the largest weight in the minimum spanning tree until the number

of desired clustered (connected components) is achieved [59][123][138]. After applying

the algorithm the connected components indicate which objects belong to which clusters:

objects whose nodes are connected by edges are in the same cluster. Recently there has

been some progress with performing clustering directly on graph-based data. For

example, an extension of self-organizing maps (SOMs) which allows the procedure to

work with graphs has been proposed [50]; graph edit distance and weighted mean of a

pair of graphs were introduced to deal with graph-based data under the SOM algorithm.

Clustering of shock trees using tree edit distance has also been considered [75]. Both of

these methods have in common that they use graph (or tree) edit distance for their graph

distance measures. One drawback of this approach is that the edit cost functions must be

specified for each application. Sanfeliu et al. have investigated clustering of attributed

graphs using their own function-described graphs as cluster representatives [109].

However, their method is rather complicated and much more involved than our

straightforward extension of a classical, simple clustering algorithm.

The chapter is organized as follows. In Section!6.2, we extend the classical k-

means algorithm to use graphs instead of vectors. In Section!6.3 we will describe the web

data sets that we use for our experiments. The three performance measures we use to

evaluate performance are given in Section!6.4. In Section!6.5 we present experimental

www.manaraa.com

62

Inputs: the set of n data items and a parameter k, defining the number of clusters to create

Outputs: the centroids of the clusters and for each data item the cluster (an integer in [1,k]) it belongs to

Step!1. Assign each data item randomly to a cluster (from 1 to k).

Step!2. Using the initial assignment, determine the centroids of each cluster.

Step!3. Given the new centroids, assign each data item to be in the cluster of its closest centroid.

Step!4. Re-compute the centroids as in Step 2. Repeat Steps 3 and 4 until the centroids do not change.

Inputs: the set of n data items (represented by graphs) and a parameter k, defining the number of clusters

to create

Outputs: the centroids of the clusters (represented by median graphs) and for each data item the cluster (an

integer in [1,k]) it belongs to

Step!1. Assign each data item randomly to a cluster (from 1 to k).

Step!2. Using the initial assignment, determine the median of the set of graphs of each cluster.

Step!3. Given the new medians, assign each data item to be in the cluster of its closest median, using a

graph-theoretic distance measure.

Step!4. Re-compute the medians as in Step 2. Repeat Steps 3 and 4 until the medians do not change.

results and a comparison with previously published results from clustering the same web

document collection when using a vector model and the classical k-means algorithm.

Concluding remarks are given in Section!6.6.

6.2 The Extended k-Means Clustering Algorithm

With our formal notation for graphs (Chapter!3), we are ready to describe our

framework for extending the classical k-means clustering method. The extension is

surprisingly simple. First, any distance calculations between data items is accomplished

with a graph-theoretical distance measure, such as those of Eqs.!3.3–3.7. Second, since it

is necessary to compute the distance between data items and cluster centers, it follows

that the cluster centers (centroids) must also be graphs. Therefore, we compute the

representative “centroid” of a cluster as the median graph of the set of graphs in that

cluster (Eq.!3.27).

Figure!6.1. The Traditional k-Means Clustering Algorithm

Figure!6.2. The Graph-Theoretic k-Means Clustering Algorithm

The k-means clustering algorithm is a simple and straightforward method for

clustering data [91]. The basic algorithm is given in Fig.!6.1. This method is applicable to

purely numerical data when using Euclidean distance and centroid calculations. The usual

paradigm is to represent each data item, which consists of m numeric values, as a vector

in the space 8m. In this case the distances between two data items are computed using the

Euclidean distance in m dimensions and the centroids are computed to be the mean or

weighted mean of the data in the cluster. However, now that we have a distance measure

for graphs (Eqs.!3.3–3.7) and a method of determining a representative of a set of graphs

(the median, Eq.!3.27) we can apply the same method to data sets whose elements are

www.manaraa.com

63

graphs rather than vectors by: 1. replacing the distance measure used in Step!3 with a

graph-theoretical distance measure and 2. replacing the centroid computed in Step!2 with

the median of a set of graphs. The graph-theoretical version of the k-means algorithm is

given in Fig.!6.2.

6.3 Web Document Data Sets

In order to evaluate the performance of our methods we will perform several

experiments using three different collections of web documents, called the F-series, the

J-series, and the K-series.* These three data sets were selected because of two major

reasons. First, all of the original HTML documents are available for these data sets,

which is necessary if we are to represent the web documents using graphs; many other

document collections only provide a pre-processed vector representation, which is

unsuitable for use with our method. Second, ground truth assignments are provided for

each data set, and there are multiple classes representing easily understandable groupings

that relate to the content of the documents. Some web document collections are not

labeled or are presented with some other task in mind than content-related classification

(e.g. building a predictive model based on user preferences).

The F-series originally contained 98 documents belonging to one or more of 17

sub-categories of four major category areas: manufacturing, labor, business & finance,

and electronic communication & networking. Because there are multiple sub-category

classifications from the same category area for many of these documents, we have

reduced the categories to just the four major categories mentioned above in order to

simplify the problem. There were five documents that had conflicting classifications (i.e.,

they were classified to belong to two or more of the four major categories) which we

removed, leaving 93 total documents. The J-series contains 185 documents and ten

classes: affirmative action, business capital, information systems, electronic commerce,

intellectual property, employee rights, materials processing, personnel management,

manufacturing systems, and industrial partnership. We have not modified this data set.

The K-series consists of 2,340 documents and 20 categories: business, health, politics,

sports, technology, entertainment, art, cable, culture, film, industry, media, multimedia,

music, online, people, review, stage, television, and variety. The last 14 categories are

sub-categories related to entertainment, while the entertainment category refers to

entertainment in general. These were originally news pages hosted at Yahoo

(www.yahoo.com). Experiments on this data set are presented in [120], and we will

compare our method to the previously reported results in Section!6.5.

Data for the vector-based experiments we will perform in Chapters!7–10 comes

from pre-processed term–document matrices obtained from the same web site that hosts

these document collections. The number of dimensions (terms) used for the vector

representation of each data set is 332 (F), 474 (J) and 1,458 (K).

* The data sets are available under these names at: ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata/

www.manaraa.com

64

6.4 Clustering Performance Measures

We will evaluate clustering performance in our experiments using the following

three clustering performance measures. The first two indices measure the matching of

obtained clusters to the “ground truth” clusters (i.e. accuracy), while the third index

measures the compactness and separation of the clusters. The first index is the Rand

index [65][103], which is defined as:

!

R
I

=
A

A + D
(6.1)

where A is the number of “agreements” and D is the number of “disagreements”

(described below). We compute the Rand index by performing a pair-wise comparison of

all pairs of objects in the data set after clustering. If two objects are in the same cluster in

both the “ground truth” clustering and the clustering we wish to measure, this counts as

an agreement. If two objects are in different clusters in both the ground truth clustering

and the clustering we wish to investigate, this is also an agreement. Otherwise, there is a

disagreement. Thus the Rand index is a measure of how closely the clustering created by

some procedure matches ground truth (i.e. it is a measure of clustering accuracy). It

produces a value in the interval [0,1], with 1 representing a clustering that perfectly

matches ground truth.

The second performance measure we use is mutual information [23][120], which

is defined as:

(6.2)

where n is the number of data items, k is the desired number of clusters, g is the actual

number of “ground truth” categories, and

!

ni
(j) is the number of items in cluster i classified

to be category j. Note that k and g may not necessarily be equal, which would indicate we

are attempting to create more (or fewer) clusters than those that exist in the ground truth

clustering. Mutual information represents the overall degree of agreement between the

clustering and the categorization provided by the ground truth with a preference for

clusters that have high purity (i.e. are homogeneous with respect to the classes of objects

clustered). Higher values mean better performance.

The third performance measure we use is the Dunn index [35], which is defined

as:

!

D
I

=
d
min

d
max

(6.3)

where dmin is the minimum distance between any two objects in different clusters and dmax

is the maximum distance between any two items in the same cluster. The numerator

captures the worst-case amount of separation between clusters, while the denominator

www.manaraa.com

65

captures the worst-case compactness of the clusters. Thus the Dunn index is an amalgam

of the overall worst-case compactness and separation of a clustering, with higher values

being better. It does not, however, measure clustering accuracy compared to ground truth

as the other two methods do. Rather it is based on the basic underlying assumption of any

clustering technique: items in the same cluster should be similar (i.e. have small distance,

thus creating compact clusters) and items in separate clusters should be dissimilar (i.e.

have large distance, thus creating clusters that are well separated from each other).

6.5 Comparison with Published Results

In order to perform an investigation into the performance and possible benefits of

our graph-based approach, we performed experiments that apply the extended k-means

clustering algorithm using graphs to the K-series document collection described above in

Section!6.3. We selected this data set primarily because we wished to compare the

performance of our method to previously reported results. In [120] Strehl et al. compared

the performance of different vector-based clustering methods for the K-series data set,

presenting results for a variety of standard clustering methods, including classical k-

means. The authors used various similarity measures and mutual information (Eq.!6.2) as

a performance metric.

In an attempt to adhere to the methodology of the experiments of Strehl et al.,

which used the vector model approach, we have selected a sample of 800 documents

from the total collection of 2,340 and have fixed the desired number of clusters to be k =

40 (two times the number of categories), which is the same number of clusters used in the

original experiment. Strehl et al. used this number of clusters “since this seemed to be the

more natural number of clusters as indicated by preliminary runs and visualisation” [120].

The results for our method using different numbers of maximum nodes per graph and the

original results from Strehl et al. for vector-based k-means and a random baseline

assignment are given in Table!6.1 (higher mutual information is better). Each row gives

the average of 10 experiments using the same 800 item data sample. The variation in

results between runs comes from the random initialization in the first step of the k-means

algorithm. For these experiments we used the MCS distance measure (Eq.!3.3) and the

standard representation described in Chapter!4.

The same performance data is plotted graphically in Fig.!6.3. In Fig.!6.4 we show

the execution times for performing a single clustering of the document collection when

using 5, 50, 100, and 150 nodes per graph. These results were obtained on a 733 MHz

single processor Power Macintosh G4 with 384 megabytes of physical memory running

Mac OS X. The clustering took 7.13 minutes at 5 nodes per graph and 288.18 minutes for

150 nodes per graph. Unfortunately, no execution time data is available for comparison

from the original experiments in Strehl et al.

Briefly reviewing some of these vector-related distance metrics [107][120] (which

will also be used in future experiments), we have the Euclidean distance:

!

distEUCL (x,y) = (xi " yi)
2

r=1

n

(6.4)

www.manaraa.com

66

where xi and yi are the ith components of vectors x=[x1, x2, ..., xn] and y=[y1, y2, ..., yn],

respectively. However, for applications in text and document clustering and

classification, the cosine similarity measure [107] is often used due to its length

invariance property. We can convert this to a distance measure by the following:

!

distCOS (x, y) = 1 "
x • y

x # y
(6.5)

Here • indicates the dot product operation and ||...|| indicates the magnitude (length) of a

vector. Another popular distance measure for determining document similarity is the

extended Jaccard similarity [107], which is converted to a distance measure as follows:

!

distJAC (x,y) = 1 "

xiyi
i=1

n
#

xi
i=1

n
+ yi " xiyi

i=1

n
#

i=1

n
#

(6.6)

Table!6.1. Results of Our Experiments Compared with Results from Strehl et al.

Method Max. Nodes/Graph :M (average)

Graphs 150 0.2218

Graphs 120 0.2142

Graphs 90 0.2074

Graphs 75 0.2045

Graphs 60 0.1865

Extended Jaccard Similarity – 0.184

Pearson Correlation – 0.178

Cosine Measure – 0.178

Graphs 45 0.1758

Graphs 30 0.1617

Graphs 15 0.1540

Graphs 5 0.1326

Random (baseline) – 0.066

Euclidean – 0.046

From Fig.!6.3 we see that the mutual information generally tends to increase as

we allow larger and larger graphs. This makes sense since the larger graphs incorporate

more information. On the figure we indicated the values of mutual information from the

original experiments for three out of the five methods from Table!6.1. Euclidean is the

classical k-means with a Euclidean distance measure (Eq.!6.4). Random baseline is

simply a random assignment of data to clusters; it is used to provide a baseline for

comparison. We would expect any algorithm to perform better than Random, but we see

the Euclidean k-means did not. Finally, Jaccard is k-means using the extended Jaccard

similarity (Eq.!6.6). It was the best performing of all the k-means methods reported in the

original experiment so we have omitted cosine similarity and Pearson correlation on the

chart for clarity.

www.manaraa.com

67

0

0.05

0.1

0.15

0.2

0.25

5 15 30 45 60 75 90 120 150

Maximum Nodes/Graph

M
u
tu

a
l
In

fo
rm

a
ti
o
n

Graphs Random Euclidean Jaccard

Figure 6.3. Mutual Information as a Function of the Maximum Number of Vertices

per Graph

0

50

100

150

200

250

300

350

5 50 100 150

Maximum Nodes/Graph

T
im

e
 (

m
in

u
te

s
)

Figure 6.4. Clustering Time as a Function of the Maximum Number of Vertices per

Graph

It is not a surprising result to see Euclidean distance perform poorly when using

the vector model for representing documents, as it does not have the property of vector

length invariance. Because of this, documents with similar term frequency proportions

but differences in overall total frequency have large distances between them even though

they are supposed to be considered similar. For example, if we were interested in the

topic “data mining”, a document where the terms “data” and “mining” each appeared 10

times and a document where both terms each appeared 1,000 times are considered to be

identical when we have the length invariance property (i.e. their distance is 0). It is only

www.manaraa.com

68

the relative proportion between the terms that is of interest when determining the

document’s content, since there are often large variances in total term frequency even for

documents related to the same topic. Here both documents contain an equal proportion of

the terms “data” and “mining”. If the term “mining” occurred much more frequently than

“data”, we would expect the document to be related to a different topic (e.g., “gold

mining”). Under Euclidean distance these two documents would have a large distance

(i.e. be considered dissimilar) due to the fact that the difference in total frequency (10 vs.

1,000) is large. This is why distance measures with the length invariance property (such

as the cosine measure, which measures the cosine of the angle between two feature

vectors) are often used in these types of applications in lieu of standard Euclidean

distance.

We see that even with only 5 nodes per graph our method outperforms both

Euclidean k-means and the random baseline; as we increased the number of nodes per

graph the performance approaches that of the other k-means methods until it exceeded

even the best k-means method reported at 75 nodes per graph or more. For comparison,

the original experiment used a term-document matrix where each vector had 2,903

dimensions. We note a general increasing trend in performance as we allow for larger

graphs, which would be consistent with the increase in information that occurs as we

introduce new terms (nodes) and phrases (edges) in the graphs. However, the

performance improvement is not always strictly proportional with the increase in graph

size. For example, the improvement from 60 to 75 is greater than the improvement from

75 to 90 even though we are adding 15 new nodes in each case. This may be due to the

fact that the extra nodes added when we increase the graph size, while they are frequently

occurring terms, may not always provide information that is useful for discriminating

between the documents and in actuality may hinder performance by introducing

extraneous data. A future improvement may be to find better methods of selecting the

nodes to be used in each graph rather than relying strictly on term frequency.

6.6 Remarks

A graph representation allows us to retain structural information such as where

terms are located in a document and the order in which terms appear — information

which is usually discarded when using the typical vector model approach. Given a graph

model of web documents, we can apply classical clustering techniques such as k-means

by performing a novel extension from vector-based distance and centroid calculations to

graph-theoretic distance and median graphs, respectively. To investigate the performance

of the extended k-means method with our graph representation of web documents, we

performed experiments on a web document collection and compared clustering

performance with previously reported results of clustering using k-means when utilizing a

vector model for the same documents. We have discovered the following from our

experiments:

(1) Our method outperformed the baseline random assignment method and the

vector-based k-means method using Euclidean distance, even in the case of

maximum dimensionality reduction using only 5 nodes per graph.

www.manaraa.com

69

(2) As the maximum number of nodes allowed per graph became larger, the

performance of our method generally increased. This reflects an increase in the

amount of information in the graphs as we add nodes and edges.

(3) Our method outperformed all the k-means clustering methods (Euclidean

distance, cosine measure, Pearson correlation, and Jaccard similarity) described in

Strehl et al. [120] when we allowed 75 nodes per graph or more. We believe this

reflects the information retained by the graph representation which is not present

when using the vector model approach.

In the next chapter we will continue to investigate the performance of the graph-theoretic

k-means algorithm we introduced by performing experiments on other web document

collections, varying the graph-theoretical distance measure used in the algorithm, using

more clustering performance measures, and using the various methods previously

described for representing web documents (Chapter!4).

www.manaraa.com

70

Chapter Seven

Comparison of Different Graph-Theoretical Distance Measures and Graph
Representations for Graph-Theoretic Clustering

7.1 Introduction

The experimental results of the previous chapter are encouraging. However, the

results reported were based on only a single data set using one clustering performance

index. Further, we only implemented one type of graph-theoretic distance measure (the

MCS distance) and one graph representation methodology (the “standard”). In this

chapter we will further investigate the performance of our graph-based clustering method

based on k-means by looking at other distance measures and graph representations. We

will also apply the method to two other data sets and compare performance with three

different performance measures. The typical vector model performance is also reported

for a comparison baseline. In Section!7.2 we will give the experimental results when

clustering the data sets using five graph-theoretical distance measures. Similarly in

Section!7.3 we will look at the effect of graph representations on clustering performance.

We will use the following methodology for the experiments presented in this

chapter. For each experiment, whether based on our graph method or a traditional vector

method, we will perform ten separate trials each using a random initialization. We will

report the average of the ten trials as the performance for that experiment in order to

account for the variance between runs due to the random initialization of the clustering

algorithm. The vector representation experiments will use the vector-based distance

measures (Eq.!6.4–6.6) we described previously. The experiments related to our graph-

based methods will be run for a range of maximum graph sizes (the parameter m

described in Section!4.2). We will apply the clustering algorithms to our three data sets

(Section!6.3) and we will measure clustering performance using the Rand index (Eq.!6.1),

mutual information (Eq.!6.2), and the Dunn index (Eq.!6.3). For the experiments in

Section!7.2 we will use the MCS, WGU, UGU, MMCS, and MMCSN distance measures

(Eqs.!3.3–3.7) with the standard graph representation. Concerning the experiments in

Section!7.3, we will use the graph representations (standard, simple, n-distance, n-simple

distance, absolute frequency and relative frequency) defined in Chapter!4 with the MCS

distance measure. For the distance related graph representations, namely n-distance and

n-simple distance, we will use n = 5 (i.e. 5-distance and 5-simple distance). Note that for

the graph representations and graph sizes we have defined,

|MCS(G1,G2)|=|G1|+|G2|–|mcs(G1,G2)| and thus WGU and MMCSN are identical, as are

UGU and MMCS (see Chapter!3). Any differences between the identical distance

measures reflected in the results below come from the random initialization of the k-

means algorithm.

www.manaraa.com

71

Table!7.1. Clustering Performance Comparison for K-Series

Method Rand Index Mutual Information Dunn Index

vector (cosine) 0.8537 0.2266 0.0348

vector (Jaccard) 0.8998 0.2441 0.0730

graph (40 nodes/graph) 0.8563 0.0752 0.0240

graph (70 nodes/graph) 0.8957 0.1174 0.0284

graph (100 nodes/graph) 0.8888 0.1310 0.0298

graph (200 nodes/graph) 0.9053 0.1618 0.0307

In Table!7.1 we give the results of performing k-means on the entire K-series data

set of 2,340 documents for a variety of graph sizes. We see that while Rand index for the

graph methods was similar to the performance of the vector approach, mutual

information and Dunn index were not as good. We observe that the performance of all

three measures continued to increase with larger graph sizes, so it is possible we created

graphs which did not include enough terms for this data set. Recall that in the previous

chapter we used a subset of 800 documents from this data set, and performance exceeded

that of the best vector method for 60 nodes per graph or more. Another possible

explanation for the difference in performance is that there is a variation in the number of

clusters created. The previous experiments used k = 40 for comparison with previously

published results. The experiments in this chapter used k = 20, which matches ground

truth.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

10 20 30 40 50 60 70 80 90 100

Maximum Number of Nodes per Graph

R
a
n
d
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine

Euclidean

MCS

WGU

UGU

MMCS

MMCSN

Figure 7.1. Distance Measure Comparison for the F-Series Data Set (Rand Index)

www.manaraa.com

72

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

Maximum Number of Nodes per Graph

M
u
tu

a
l
In

fo
rm

a
ti
o
n

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)
cosine

Euclidean

MCS

WGU

UGU

MMCS

MMCSN

Figure!7.2. Distance Measure Comparison for the F-Series Data Set (Mutual
Information)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

Maximum Number of Nodes per Graph

D
u
n
n
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine

Euclidean

MCS

WGU

UGU

MMCS

MMCSN

Figure!7.3. Distance Measure Comparison for the F-Series Data Set (Dunn Index)

Table!7.2. Distance Measure Comparison for K-Series

Distance Measure Rand Index Mutual Information Dunn Index

MCS 0.8957 0.1174 0.0284

WGU/MMCSN 0.8377 0.1019 0.0385

UGU/MMCS 0.1692 0.0127 0.0649

www.manaraa.com

73

7.2 Comparison of Distance Measures

The results of our experiments for the F-series documents are given in Fig.!7.1 for

Rand index, Fig.!7.2 for mutual information, and Fig.!7.3 for Dunn index. The results of

the vector-model clusterings are shown by horizontal lines. The results for our graph-

based method are given for graph sizes ranging from 10 to 100 nodes per graph.

Similarly, the results of our experiments for the J-series documents are given in

Figs.!7.4–7.6 for graph sizes of 10 to 60 nodes per graph. Results for the K-series,

utilizing 70 nodes per graph for each graph-theoretic distance measure, are presented in

Table!7.2.

We see that the graph-based methods that use normalized distance measures

performed as well or better than vector-based methods using cosine similarity or

Euclidean distance. Distance measures that were not normalized to the interval [0,1]

performed poorly, particularly when the maximum allowed graph size became large. To

see why this occurs, we have provided the following example. Let |G1|=10, |G2|=10,

|mcs(G1,G2)|=0, |G3|=20, |G4|=20, and |mcs(G3,G4)|=5. Clearly graphs G3 and G4 are more

similar to each other than graphs G1 and G2 since G1 and G2 have no common subgraph

whereas G3 and G4 do. However, the distances computed for these graphs are dMCS(G1,G2)

= 1.0, dMCS(G3,G4) = 0.75, dUGU(G1,G2) = 20 and dUGU(G3,G4) = 30. So we have the case

that the distance for un-normalized graph union (UGU) is actually greater for the pair of

graphs that are more similar. This is both counter-intuitive and the opposite of what

happens in the cases of the normalized distance measures. Thus this phenomenon leads to

the poor clustering performance. Since the size of the graph includes the number of

edges, which can grow at a rate of O(|V|2), we can see that the potential size variance

which causes this phenomenon becomes more pronounced as we increase the number of

nodes per graph (i.e. as |V| increases).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60

Maximum Number of Nodes per Graph

R
a
n
d
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine

Euclidean

MCS

WGU

UGU

MMCS

MMCSN

Figure!7.4. Distance Measure Comparison for the J-Series Data Set (Rand Index)

www.manaraa.com

74

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60

Maximum Number of Nodes per Graph

M
u
tu

a
l
In

fo
rm

a
ti
o
n

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)
cosine

Euclidean

MCS

WGU

UGU

MMCS

MMCSN

Figure!7.5. Distance Measure Comparison for the J-Series Data Set (Mutual
Information)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60

Maximum Number of Nodes per Graph

D
u
n
n
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine

Euclidean

MCS

WGU

UGU

MMCS

MMCSN

Figure!7.6. Distance Measure Comparison for the J-Series data set (Dunn index)

We see from the experimental results that the quality of clustering as measured by

the Dunn index is more or less constant with the size of the graphs, with the distance

measure seeming to have more effect than the data representation itself. We note similar

behavior between mutual information and Rand index. For these two indices we see

performance peaking at certain graph sizes but otherwise the performance is fairly

constant. This could be due to the fact that the terms selected for those graph sizes

provide particularly good discriminating information on the pre-defined set of categories.

For larger graphs that indicate a decline in performance, it may be the case that we have

polluted the graphs with unimportant terms which hurt the performance of the clustering

algorithm. We also see that the results for each distance measure under all three

www.manaraa.com

75

performance indices are consistent across all three data sets. The fact that the graph-based

methods performed as well or better than the vector-based method, even when the size of

the graphs was relatively small, is encouraging and may indicate the quality of the added

structural information that is captured in the graphs but not in the vector representations.

Further, with the graph model there is also a potential for computational and space

savings in terms of the data represented. For example, if we wish to add a new term to a

document in a vector model representation, all documents must have their dimensionality

increased by one (and thus the dimensionality of the feature space increases by one).

However, if we want to add a new term to a document with a graph representation, we

need only add the new node and edges to that particular graph, and the distance

calculations between other graphs remains unaffected.

Table!7.3. Graph Representation Comparison for K-Series

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

10 20 30 40 50

Maximum Nodes per Graph

R
a
n
d
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!7.7. Graph Representation Comparison for the F-Series Data Set (Rand

Index)

Representation Rand Index Mutual Information Dunn Index

standard 0.8957 0.1174 0.0284

simple 0.8870 0.0972 0.0274

5-distance 0.8813 0.1013 0.0206

5-simple distance 0.8663 0.0773 0.0234

absolute frequency 0.8770 0.0957 0.0335

relative frequency 0.8707 0.0992 0.0283

www.manaraa.com

76

0.1

0.12

0.14

0.16

0.18

0.2

0.22

10 20 30 40 50

Maximum Nodes per Graph

M
u
tu

a
l
In

fo
rm

a
ti
o
n

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!7.8. Graph Representation Comparison for the F-Series Data Set (Mutual
Information)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

10 20 30 40 50

Maximum Nodes per Graph

D
u
n
n
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!7.9. Graph Representation Comparison for the F-Series Data Set (Dunn
Index)

www.manaraa.com

77

7.3 Comparison of Graph Representations

From our experimental results that compare our methods of representing web

documents by graphs (Chapter!4), which are presented in Figs.!7.7–7.9 and 7.10–7.12 as

a function of the maximum number of nodes allowed in a graph for the F-series and the J-

series, respectively, we see that the various graph representations can perform as well or

better than the conventional vector model approach in terms of clustering accuracy (Rand

and mutual information). The F-series showed good results for the graph representations,

but the J-series was not quite as good, especially for representations other than standard

and relative frequency. In terms of ranking the various graph representations, the results

do not show a clear ordering that is consistent for both data sets with the exception that

the standard and relative frequency representations are generally the best performing in

terms of clustering accuracy (Rand and mutual information) and outperform the vector

representation in most cases for both data sets. In terms of the Dunn index, which

measures cluster compactness and separation, we obtain the best performance when using

the n-distance or n-simple distance representations over the other graph representations

and it is apparent for the Dunn index that 5-distance was the best performing with 5-

simple distance a close second. The effect of the maximum graph size (number of nodes)

on the clustering performance is not obvious. Consider the standard representation. For

the J-series the accuracy decreases at 30 nodes after reaching a maximum value at 20

nodes and there is another drop between 40 and 50 nodes, while in the F-series we see the

opposite behavior for those graph sizes. On the other hand, the quality of clustering itself

(Dunn index) does not seem to be sensitive at all to the number of nodes.

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

10 20 30 40 50

Maximum Nodes per Graph

R
a
n
d
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!7.10. Graph Representation Comparison for the J-Series Data Set (Rand
Index)

www.manaraa.com

78

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

10 20 30 40 50

Maximum Nodes per Graph

M
u
tu

a
l
In

fo
rm

a
ti
o
n

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!7.11. Graph Representation Comparison for the J-Series Data Set (Mutual
Information)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

10 20 30 40 50

Maximum Nodes per Graph

D
u
n
n
 I

n
d
e
x

(a
v
e
ra

g
e
 o

f
1
0
 e

x
p
e
ri
m

e
n
ts

)

cosine Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!7.12. Graph Representation Comparison for the J-Series Data Set (Dunn
Index)

The results for clustering the K-series data set with the various graph

representations while using 70 nodes per graph maximum are given in Table!7.3. The

results show that the standard representation was the best performing in terms of both

www.manaraa.com

79

Rand index and mutual information, while absolute frequency provided the best Dunn

index score.

The experiments in this chapter relied on a random initialization of the k-means

algorithm, which is the conventional way the algorithm is applied. However, using a

random initialization has drawbacks. First, the initialization may be poor and lead the

algorithm to converge on a bad final clustering of the data. Second, the fact that each

clustering created using the same algorithm may be different leads to difficulty in

comparing experimental results. The usual methodology is to perform a series of

experiments and report the average, as was done here. However, this is time consuming

as the same experiment must be performed repeatedly. Recently a new method of

deterministically arriving at a good initialization state for the k-means algorithm has been

reported. In the next chapter we will create a graph-theoretical version of this method and

apply it to our web data sets for the purpose of examining the effect it has on clustering

performance.

Figure!7.13. F-Series Data Set Represented by Graphs Scaled to Two Dimensions

Using 10 Nodes/Graph (Left) and 30 Nodes/Graph (Right)

7.4 Visualization of Graph Clustering

Multidimensional scaling [24] is a mathematical technique for transforming

spaces that are complex or not well understood into a lower dimensional Euclidean

feature space. The procedure attempts to preserve the original distances between objects

in the Euclidean representation. This method is useful for visualizing object relationships

that are not easily represented graphically, such as the relationships between the graphs

that are used to represent web documents in our experiments. By representing web

documents (or other complex entities) as graphs and then taking the pair-wise distance

between the graphs using one of the graph-theoretical distance measures we can apply

multidimensional scaling to arrive at a representation of the graphs in 82. This allows the

www.manaraa.com

80

graphs to be plotted graphically as points on an x-y plane, which is not possible for the

original untransformed space.

Figure!7.14. J-Series Data Set Represented by Graphs Scaled to Two Dimensions
Using 10 Nodes/Graph (Left) and 30 Nodes/Graph (Right)

Figure!7.15. K-Series Data Set Represented by Graphs Scaled to Two Dimensions

Using 70 Nodes/Graph (Left) and 100 Nodes/Graph (Right)

We have performed multidimensional scaling on our data sets using the standard

representation and MCS distance to create graphs from the web pages. The results of the

scaling are shown in Fig.!7.13 for the F-series, Fig.!7.14 for the J-series, and Fig 7.15 for

www.manaraa.com

81

the K-series. For the F and J series, the left side shows the results when using 10 nodes

per graph; the right side utilizes 30 nodes per graph. For the K-series the left side is 70

nodes per graph while the right is 100 nodes per graph. Each graph is plotted as a point in

a two-dimensional Euclidean space; the symbol of each point is given by the ground truth

cluster the graph belongs to. The ellipses give an indication of cluster shape and size

(they are fit to cover all the points of each cluster while minimizing the area).

The F-series plot clearly shows the four clusters of this data set. Though there is

some overlap towards the center of the plot, many of the data points can be easily

differentiated. Looking at the change between the left and right plots, we see cluster

compactness and separation improves as we add more nodes to the graphs. For example,

the bottom right cluster (pluses) is smaller and no longer overlaps the center cluster

(triangles) or middle left cluster (crosses). Similarly, the top right cluster (circles) is also

more compact and no longer overlaps the middle or middle left clusters. This is an

intuitively appealing result. The J-series is more difficult to view since it contains many

overlapping clusters. However, we see the data points become much more evenly

distributed as we increase the graph size (on the left plot many of the points are

concentrated in the top left area). This allows for easier differentiation between clusters.

We should note that with multidimensional scaling there is some information loss due to

the reduction of the number of dimensions; thus the plots here will not correspond exactly

to actual clustering performance as performed in the graph domain. However, the

apparent increase in cluster compactness and separation with larger graph sizes seems

reasonable. The K-series contains more than ten times the number of documents of the J-

series, making it more difficult to view individual web documents. However, two well-

separated clusters are clearly visible on the figures: the bottom left cluster (the triangles)

and the top middle cluster (circles). The effect of increasing the number of nodes per

graph is less dramatic than in the other two data sets. This is probably due either to the

amount of information added by going from 70 to 100 nodes per graph being less than the

increase in information when going from 10 to 30 in the other data sets, or that this data

set is simply to complex (too large, too many clusters) to visualize well.

www.manaraa.com

82

Chapter Eight

The Graph-Theoretic Global k-Means Algorithm

8.1 Introduction

In our previous experiments with clustering we used random initializations at the

first step of the k-means algorithm. Recently Likas et al. [71] have introduced what they

call the global k-means method. This method provides a way of determining “good”

initial cluster centers for the k-means algorithm, without having to use random

initializations. Their experimental results have shown clustering performance under

global k-means which is as good or better than using random initializations. The basic

procedure is an incremental computation of cluster centers. Starting at the case of one

cluster (k = 1), the cluster center is defined to be the centroid of the entire data set. For

the general case of k clusters, the centers are determined by taking the centers from the k-

1 clusters problem and then determining the optimum location of a new center. This is

accomplished by considering each data item as the new cluster center and then executing

the k-means algorithm with that particular set of cluster centers and determining which

data point minimizes the error as defined by:

!

E(m
1
,...,m

M
) = I(x

i
" C

k
) x

i
#m

k

2

k=1

M

$
i=1

N

$ (8.1)

where N is the number of data items, M is the number of clusters, xi is data item i, mk is

cluster center k, and I(X) = 1 if X is true and 0 otherwise. A problem with this approach is

that it requires execution of the k-means algorithm O(N!M) times. For many applications

this will be too time-consuming. With this in mind, the authors have also proposed a

“fast” version of global k-means. Under this method, instead of running k-means when

considering each data item as a new cluster center candidate, we calculate the following:

!

bn = max(dk"1
j " xn " x j

2

,0)
j=1

N

(8.2)

where

!

dk"1
j is the distance between data item xj and its closest cluster center for the k-1

clustering problem. We then select the new cluster center to be data item xi where:

!

i = argmax
n

b
n (8.3)

www.manaraa.com

83

It is this “fast” version of the global k-means method that we have implemented and that

we will use for our experiments in this chapter. Specifically we will apply the global k-

means method to our graph-based k-means algorithm to see if there is any improvement

over the previous cases that used random initializations [117]. Further, due to the

incremental nature of the global k-means method, where determining the initial centers

for k clusters implies we must also determine the initial centers for 1 to k–1 clusters, this

provides an opportunity to examine the question of automatically determining the

optimum number of clusters. Many clustering methods, including k-means, require the

user to specify in advance the number of clusters to create. With a method that

automatically determines the number of clusters we do not have to do this, which is

beneficial if the number of clusters is not known a priori. In Section!8.2 we will give

experimental results which compare clustering performance under global k-means as

compared with random initialization. In Section!8.3 we will look at the problem of

automatically determining the best number of clusters; we will run both the global k-

means and random methods for a range of k values and calculate various performance

indices for each case.

Cluster validity has long been studied and several approaches are represented in

the literature. In [41], Frigui and Krishnapuram present a clustering algorithm based on

fuzzy c-means which determines the optimal number of clusters by merging similar

clusters, thus eliminating unimportant or spurious clusters. In [64][94] interesting

methods of finding the number of clusters with a procedure based on scale-space

persistence are presented. In general terms, an ever expanding neighborhood is examined.

When the neighborhood is at a minimum, every data point is in its own separate cluster.

As the neighborhood expands clusters are merged until eventually there is one giant

cluster comprising the entire data set. This can be seen as “zooming” in or out on the

data, effectively looking at different levels of granularity. By performing this zooming

over a range of fixed increments, we can look at how many clusters exist at each

increment. The optimum number of clusters is then the one that persisted over the largest

range of increments. Hardy investigates seven methods of determining the number of

clusters in [52]. One of his observations is that since every clustering method has an

underlying implicit cluster characteristic that it prefers, we must be sure to choose an

algorithm that matches the structure of the data. Cluster validity using graph-theoretic

concepts in place of traditional validity indices was investigated in [98]. New cluster

validity methods for the fuzzy c-means algorithm have been proposed in [104][137]. New

clustering algorithms which explicitly take into account cluster validity are given in

[135][136].

8.2 Global k-Means vs. Random Initialization

We performed a series of experiments on the F-series and J-series data sets; the

results are presented in Tables!8.1 to 8.4 for values of k equal to the number of clusters

present in ground truth (k = 4 for F-series, k = 10 for J-series). We compared our usual

graph-based method using MCS distance and the standard representation to the vector-

based method using distance based on Jaccard similarity. The results show that in all

cases, whether graph or vector related, the global k-means method outperformed the

www.manaraa.com

84

corresponding random method. Here random denotes the average of ten experiments each

using a random initialization. This reaffirms the original experimental results of [71]. The

results also show that, except for the case of F-series data set when using 10 nodes per

graph, our graph-based method outperformed the vector method. The execution times for

the experiments are also given in Tables!8.5 and 8.6. All experiments were carried out on

the same system under the same operating conditions: an un-loaded 296 MHz Sun

UltraSPARC-II with 1,024 megabytes of memory. As expected, the execution time for

global k-means is much greater than random, due to the need to compute the cluster

centers. We also see the potential for a time savings over the vector case when using

small graphs. For the J-series, not only was using the graph-based method with a

maximum graph size of 10 nodes better performing than the vector case, it was faster by

nearly four and a half hours.

Table!8.1. Results for F-Series (Rand Index)

Global k-means Random

Graph Size Jaccard Graphs Jaccard Graphs

10 0.7057 0.7281 0.6899 0.6730

20 0.7057 0.7976 0.6899 0.7192

30 0.7057 0.7838 0.6899 0.7394

Table!8.2. Results for F-Series (Mutual Information)

Global k-means Random

Graph Size Jaccard Graphs Jaccard Graphs

10 0.1914 0.1653 0.102 0.1498

20 0.1914 0.2274 0.102 0.1638

30 0.1914 0.2336 0.102 0.1793

Table!8.3. Results for J-Series (Rand Index)

Global k-means Random

Graph Size Jaccard Graphs Jaccard Graphs

10 0.8809 0.9049 0.8717 0.8689

20 0.8809 0.9065 0.8717 0.8819

30 0.8809 0.9056 0.8717 0.8758

www.manaraa.com

85

Table!8.4. Results for J-Series (Mutual Information)

Global k-means Random

Graph Size Jaccard Graphs Jaccard Graphs

10 0.2787 0.3048 0.2316 0.2393

20 0.2787 0.3135 0.2316 0.2597

30 0.2787 0.3188 0.2316 0.2447

Table!8.5. Execution Times Using Random Initialization (in Seconds)

Random (average of 10 experiments)

Graphs – 10 Graphs – 20 Graphs – 30 Jaccard

F-series 84.4 126.1 205.3 24.5

J-series 173.1 396.4 550.2 214.9

Table!8.6. Execution Times Using Global k-Means (in Minutes)

Global k-means

Graphs – 10 Graphs – 20 Graphs – 30 Jaccard

F-series 11.87 24.88 38.68 14.57

J-series 239.55 545.92 818.47 507.55

8.3 Optimum Number of Clusters

Previously we have used three indices to measure clustering performance: Rand

index, mutual information, and Dunn index. Both Rand and mutual information compare

the clustering produced by an algorithm to the actual ground truth clustering. For the

problem of determining the optimum number of clusters automatically, we cannot assume

that a ground truth clustering is available for evaluation. In this case we need a cluster

validation index, which is a measure of clustering quality that is not dependant on

knowing the ground truth clustering. The Dunn index (Eq.!6.3) is one such index,

however it is sensitive to noise and outliers. Some other notable indices have been

reported in the literature, and we present some of them here. First we have the C index

[56], which is defined as:

!

C =
S " S

min

S
max

" S
min

(8.4)

where S is the sum of all distances of pairs of items in the same cluster. We define l to be

the number of these pairs used to compute S. Smin and Smax are the sum of the l smallest

and largest distances, respectively. The smaller the value of C, the better the clustering.

Another validity index is the Davies-Bouldin index [30], defined as:

www.manaraa.com

86

!

DB =
1

M
max

j=1,...,M ; j" i
(dij)

i=1

M

(8.5)

where M is the number of clusters and

!

dij =
ri + rj

d(ci,c j)
(8.6)

Here ri is the average distance of all data items in cluster i to their cluster center and

d(ci,cj) is the distance between the centers of clusters i and j. dij measures, similar to the

Dunn index, the compactness (numerator) and separation (denominator) of cluster pairs.

A small value of the Davies-Bouldin index is desirable.

Finally, we have the Goodman-Kruskal index [44], which is somewhat similar to

the Rand index. In the Goodman-Kruskal method we examine all quadruples of data

items (q, r, s, t) and look to see if they conform to one of the following cases:

(1)!d(q, r) < d(s, t); q and r in the same cluster; s and t in different clusters

(2)!d(q, r) > d(s, t); q and r in different clusters; s and t in the same cluster

(3)!d(q, r) < d(s, t); q and r in different clusters; s and t in the same cluster

(4)!d(q, r) > d(s, t); q and r in the same cluster; s and t in different clusters

If we have case (1) or case (2), this is called concordant and indicates that pairs of items

that are in the same cluster should have a smaller distance than pairs of items that are in

different clusters. Similarly, cases (3) and (4) are called discordant. Let S+ be the number

of concordant quadruples and S- be the number of discordant quadruples. The Goodman-

Kruskal index is then given by

!

GK =
S

+
" S

"

S
+

+ S
"

(8.7)

A large value for GK indicates a good clustering (i.e. high concordance). A problem with

this method is immediately evident, however: the complexity of computing GK is O(n4),

where n is the number of items in the data set. Thus computing this index can be more

time consuming than performing the clustering itself.

We performed experiments for values of k varying from 2 to 10 for both the F-

series and the J-series data sets when using both global k-means or a random

initialization. Here random initialization is accomplished as before by randomly

assigning each data item to a cluster. Note that it is not possible to re-use the same

random initialization for different values of k, thus each experiment has a separate

random initialization. Our graphs were created using the standard representation and a

maximum of 10 nodes/graph; the distance measure used was MCS. The results are

presented in Tables!8.7 to 8.10. The “best” number of clusters is determined from Rand

www.manaraa.com

87

index and mutual information, which indicate the performance as compared to ground

truth.

Table!8.7. Results for F-Series Using Global k-Means

of

clusters Dunn Davies-Bouldin Goodman-Kruskal C Index Rand

Mutual

Information

2 0.6667 1.8567 0.3431 0.2451 0.5304 0.0978

3 0.6667 1.8665 0.5163 0.3687 0.6604 0.1231

4 0.6667 1.7833 0.6161 0.4188 0.7281 0.1653

5 0.6667 1.7785 0.6795 0.4391 0.7578 0.1868

6 0.6667 1.7091 0.7207 0.4028 0.7665 0.2156

7 0.6667 1.6713 0.7588 0.3745 0.7775 0.2186

8 0.6667 1.7688 0.7557 0.3780 0.7695 0.2090

9 0.6667 1.6971 0.7956 0.3385 0.7761 0.2205

10 0.6667 1.6560 0.8109 0.3236 0.7779 0.2229

We see from the results that these two indices agreed on (i.e., were optimal for)

the same value for k for the experiments that used global k-means. For the experiments

using random initialization, there was not an agreement and consequently we can’t decide

definitively on the “best” number of clusters in these cases. The next observation

regarding the results is that both Davies-Bouldin and Goodman-Kruskal always agreed

on the same k value. Further, the agreement of these two performance indices also

coincides with the optimal values for Rand index and mutual information determined

using global k-means. Dunn and C index do not seem very useful in terms of finding the

correct k value. We see that only in the case of global k-means with the F-series did Dunn

agree with the other indices, and even then the Dunn index had identical values for all k.

C index fared slightly better, agreeing with the other indices for global k-means for the J-

series; although the optimal value was at k = 2 for global k-means with the F-series, its

second best value was at the correct k value. We note that global k-means was clearly

much better in terms of agreement between cluster performance indices than random: for

both F and J-series five out of six indices agreed for global k-means, whereas random

only achieved three out of six agreements (F-series) or two out of six agreements (J-

series). Finally, we see that for the F-series, a larger number of clusters is indicated than

is present in ground truth. This could be due to the fact that the F-series data set originally

contained many more classes (see Section!6.3). Recall that we altered the ground truth to

four larger clusters which subsumed the more specific topics. It is possible that this

structure is still apparent in the data, even though we are using only a maximum of 10

terms per graph. Another possibility is that the indices we are using are sometimes

skewed towards a larger number of clusters. For example, when the number of clusters

equals the number of data items (i.e. each data item is its own cluster), indices that

measure clustering performance as a function of the distance of data items from their

cluster centers become maximized.

www.manaraa.com

88

Table!8.8. Results for F-Series Using Random Initializations

of

clusters Dunn Davies-Bouldin Goodman-Kruskal C Index Rand

Mutual

Information

2 0.6667 1.8567 0.3431 0.2451 0.5304 0.0978

3 0.6667 1.8660 0.5440 0.3480 0.6676 0.1317

4 0.6667 1.7983 0.6202 0.4173 0.7169 0.1530

5 0.6667 1.9934 0.5629 0.4889 0.7057 0.1423

6 0.6818 1.7981 0.6980 0.4244 0.7644 0.1844

7 0.6667 1.8774 0.6772 0.4545 0.7634 0.2017

8 0.6471 1.9110 0.6615 0.4763 0.7695 0.2160

9 0.6667 1.6304 0.7472 0.4011 0.7831 0.2154

10 0.6667 1.7314 0.7086 0.4610 0.7751 0.2127

Table 8.9. Results for J-Series Using Global k-Means

of

clusters Dunn Davies-Bouldin Goodman-Kruskal C Index Rand

Mutual

Information

2 0.4286 1.9427 0.2376 0.2950 0.4850 0.0911

3 0.6250 1.8845 0.4544 0.3987 0.6830 0.1435

4 0.6500 1.8174 0.5328 0.4338 0.7618 0.1848

5 0.6000 1.7792 0.5797 0.4122 0.7986 0.2041

6 0.6000 1.7768 0.6612 0.3610 0.8471 0.2480

7 0.6000 1.7653 0.6692 0.3612 0.8638 0.2599

8 0.6154 1.7453 0.7300 0.3177 0.8833 0.2819

9 0.6154 1.7612 0.7543 0.2947 0.8978 0.2978

10 0.6154 1.7379 0.7686 0.2855 0.9049 0.3048

Table 8.10. Results for J-Series Using Random Initializations

of

clusters Dunn Davies-Bouldin Goodman-Kruskal C Index Rand

Mutual

Information

2 0.4286 1.9427 0.2376 0.2950 0.4850 0.0911

3 0.4286 1.9337 0.1970 0.4466 0.5818 0.0724

4 0.5833 1.8693 0.3849 0.4830 0.7205 0.1472

5 0.6500 1.7627 0.5727 0.4123 0.7907 0.2078

6 0.5714 1.8642 0.5313 0.4680 0.7772 0.1768

7 0.6000 1.9639 0.6046 0.4043 0.8360 0.2279

8 0.5833 1.8532 0.6180 0.4138 0.8617 0.2332

9 0.5833 1.9477 0.6163 0.4066 0.8581 0.2347

10 0.5714 1.8726 0.6063 0.4800 0.8659 0.2215

We have explored content-based clustering of web documents using k-means and

global k-means. In the next chapter we turn towards performing supervised classification

of the same document sets using the k-Nearest Neighbor algorithm.

www.manaraa.com

89

Chapter Nine

A Graph-Theoretical Extension of the k-Nearest Neighbors Classification Algorithm

9.1 Introduction

Automated classification techniques, where new, previously unseen data items are

categorized to a predefined class of similar items, has long been an active research area in

pattern recognition, machine learning, and data mining. Manual classification can be

costly due to the large number of instances to be checked, their complexity, or an

insufficient amount of expert domain knowledge required to perform the classification.

The benefit of automated systems in application domains where this occurs is obvious.

Classification of natural language documents, such as web documents, is one such

domain. Because the number of documents being produced now is more than ever before,

especially when we consider the Internet with its massive amount of heterogeneous

documents, manual classification and categorization can be extremely difficult.

Classification is different than the clustering procedures we previously examined

for two major reasons. First, classification is a supervised learning task, meaning the

classifier is first trained by exposing it to a set of labeled example data. Only after

sufficient training is the classifier ready to be used for classification. Second,

classification assigns a label to each data item (web document). In contrast clustering

creates a series of groupings of the data. Thus the performance of clustering and

classification algorithms is measured in different ways.

In this chapter we introduce a graph-based extension of the popular k-Nearest

Neighbors (k-NN) classification algorithm. The leave-one-out approach will be used to

compare classification accuracy over our three document collections. We will select

several values for the number of nearest neighbors, k, and will also look at the

performance as a function of the size of the graphs representing each document. We will

also compare the performance of different graph theoretical distance measures and the

various methods of representing the web documents using graphs described in Chapter 4,

much as we did for k-means.

The remainder of this chapter is organized as follows. We describe the graph-

based extension of the k-NN algorithm in Section!9.2. In Section!9.3 we present the

results of our experiments. Finally some concluding remarks are given in Section!9.4.

9.2 k-Nearest Neighbors with Graphs

In this section we describe the k-Nearest Neighbors (k-NN) classification

algorithm and how we can easily extend it to work with graph-based data. The basic k-

NN algorithm is given as follows (see Fig. 9.1) [91]. First, we have a data set of training

www.manaraa.com

90

Inputs: a set of pre-classified training instances, a query instance q, and a parameter k, defining the

number of nearest neighbors to use

Outputs: a label indicating the class of the query instance q

Step!1. Find the k closest training instances to q according to a distance measure

Step!2. Select the class of q to be the class held by the majority of the k nearest training instances

examples (sometimes also called training instances). In the traditional k-NN approach

these will usually be numerical vectors in some real-valued Euclidean feature space. Each

of these training instances is associated with a label which indicates to what class the

instance belongs. Given a new, previously unseen instance, called a query or input

instance, we attempt to estimate which class it belongs to. Under the k-NN method this is

accomplished by looking at the k training instances closest (i.e. with least distance) to the

input instance. Here k is a user provided parameter and distance is usually defined to be

the Euclidean distance. Once we have found the k nearest training instances using some

distance measure, such as one of those defined in Eqs.!6.4–6.6, we estimate the class by

the majority among the k instances. This class is then assigned as the predicted class for

the input instance. If there are ties due to more than one class having equal numbers of

representatives amongst the nearest neighbors we can either choose one class randomly

or we can break the tie with some other method, such as selecting the tied class which has

the minimum distance neighbor. For the experiments in this chapter we will use the latter

method, which in our experiments has shown a slight improvement over random tie

breaking in nearly all cases. k-NN is classified as a lazy, instance-based learning

algorithm. Lazy meaning learning is not actually performed until a new query instance is

encountered, and instance-based meaning the knowledge utilized by the method is stored

as the instances themselves rather than as rules, tables, or some other format.

Figure 9.1. The Basic k-Nearest Neighbors Algorithm

The extension to using graphs as data for the k-NN algorithm is straightforward:

we simply represent the data as graphs (Chapter!4) and use a graph-theoretical distance

measure (Eqs.!3.3.–3.7) in lieu of traditional vector-based distance measures such as

Euclidean distance. Otherwise the algorithm remains unchanged from its usual form. As

discussed in the next section, we have implemented the k-NN algorithm for both the

traditional case of representing data as numeric vectors and our approach where we

represent data as graphs.

9.3 Experimental Results

For our graph-based experiments we used several values of maximum graph size

to examine the effect of graph size on performance. Classification accuracy was

measured by the leave-one-out method. In this method we iterate over all n documents,

using n–1 documents as training instances and then classifying the remaining instance.

Accuracy is reported as the number of documents classified correctly divided by n. As we

mentioned in Section 6.3, the F-series contains four classes: manufacturing, labor,

business & finance, and electronic communication & networking; the J-series contains

www.manaraa.com

91

ten classes: affirmative action, business capital, information systems, electronic

commerce, intellectual property, employee rights, materials processing, personnel

management, manufacturing systems, and industrial partnership; and the K-series has 20

classes: business, health, politics, sports, technology, entertainment, art, cable, culture,

film, industry, media, multimedia, music, online, people, review, stage, television, and

variety.

83%

85%

87%

89%

91%

93%

95%

97%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Vector model (cosine) Vector model (Jaccard) Graphs (10 nodes/graph)

Graphs (20 nodes/graph) Graphs (30 nodes/graph)

Figure!9.2. Classification Accuracy for the F-Series Data Set

68%

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Vector model (cosine) Vector model (Jaccard) Graphs (10 nodes/graph)

Graphs (20 nodes/graph) Graphs (30 nodes/graph) Graphs (60 nodes/graph)

Figure!9.3. Classification Accuracy for the J-Series Data Set

www.manaraa.com

92

The results for the F-series, the J-series, and the K-series are given in Figs.!9.2,

9.3, and 9.4, respectively. The graphs show the classification accuracy as a function of k,

the number of nearest neighbors to use. We used values of 1, 3, 5, and 10 for k. The

dotted lines in the figures indicate the performance of the vector model approach when

using the cosine distance measure (Eq.!6.5) or extended Jaccard distance measure

(Eq.!6.6), which we take here to be benchmarks against which our novel graph-based

method is compared. The graph-based methods in these figures use the MCS distance

measure (Eq.!3.3) and the “standard” graph representation (see Chapter!4).

70%

74%

78%

82%

86%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Vector model (cosine) Vector model (Jaccard) Graphs (40 nodes/graph)

Graphs (70 nodes/graph) Graphs (100 nodes/graph) Graphs (150 nodes/graph)

Figure!9.4. Classification Accuracy for the K-Series Data Set

We see that in the F and J-series graphs of as few as 10 nodes usually

outperformed the vector-based methods, regardless of the number of nearest neighbors.

We also see that the performance continued to improve as we created larger graphs, with

graphs using up to 20 or 30 nodes outperforming the usual vector methods in nearly all

cases. The K-series, however, needed larger graph sizes to attain an improvement in

accuracy over the vector model. We attribute this to the greater number of classes and

documents used in this data set (twice as many classes as the J-series, and more than ten

times the number of documents). In order to properly differentiate between classes a

larger number of terms is necessary. This is also reflected in the vector model, which uses

a much higher dimensionality for the K-series than the other two data sets (1,458 terms

for K versus 332 for F and 474 for J). For the K-series we used graph sizes of 40, 70, 100

and 150 nodes per graph maximum. At 40 nodes per graph our method performed

similarly to but slightly better than the vector approach using cosine distance (comparing

the best case performance for each method). With 70 nodes per graph the best

performance using graphs was similar to the best performance using Jaccard. With 100

www.manaraa.com

93

nodes per graph the graph method outperformed both of the vector methods for values of

k-3 (three out of four cases). In all three document collections, the graph representations

that outperformed the vector model were based on a significantly smaller (by an order of

magnitude) number of terms. We have also observed that the number of nearest

neighbors (k) has no consistent effect on the classification performance of any model

(whether vector or graph based) for the F and J-series. For the K-series, however, we saw

a trend of increasing performance with larger k values for the graph-based method. This

is likely due to the larger number of documents contained in this data set. The vector-

based methods showed a decline in performance as k became larger than 5.

Table!9.1. Average Times to Classify One K-Series Document for Each Method

Method Average time to classify one document

Vector (cosine) 7.8 seconds

Vector (Jaccard) 7.79 seconds

Graphs, 40!nodes/graph 8.71 seconds

Graphs, 70!nodes/graph 16.31 seconds

Graphs, 100!nodes/graph 24.62 seconds

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Graphs (30-MCS) Graphs (30-MMCS & 30-UGU) Graphs (30-MMCSN & 30-WGU)

Figure!9.5. Distance Measure Comparison for the F-Series

We also measured the execution times needed to perform the classification for the

K-series data set, which was the most time-consuming, for both the vector model

approach and our graph-based approach. The methods were timed for k = 10, and the

experiments were carried out on the same system under the same operating conditions (a

www.manaraa.com

94

cluster of seven 2.6 GHz Pentium 4 systems each with 1 gigabyte of memory). The

average times to classify a document for each method, measured over 100 experiments,

are shown in Table!9.1. It is interesting to note the relationship between run time and

performance for our method: as graph sizes become larger the performance increases but

so does the time needed to perform the classification. The classification times for our

method are also similar to those of the vector model for smaller graph sizes.

50%

55%

60%

65%

70%

75%

80%

85%

90%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Graphs (30-MCS) Graphs (30-MMCS & 30-UGU) Graphs (30-MMCSN & 30-WGU)

Figure!9.6. Distance Measure Comparison for the J-Series

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Graphs (100-MCS) Graphs (100-MMCS & 100-UGU) Graphs (100-MMCSN & 100-WGU)

Figure!9.7. Distance Measure Comparison for the K-Series

www.manaraa.com

95

In Figs.!9.5–9.7 we show the comparison of different graph distance measures

when classifying the F, J, and K-series, respectively. The MCS distance, which was used

in Figs.!9.2–9.4, is shown as a dotted line. The results of each distance measure are based

on the same set of best performing graphs (30 nodes per graph maximum for F and J; 100

for K) for each data set. We see that the graph-based methods that use normalized

distance measures performed well, while distance measures that were not normalized to

the interval [0,1] performed poorly. This same behavior was also noted in Chapter!7 for

clustering performance.

91%

92%

93%

94%

95%

96%

97%

98%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!9.8. Graph Representation Comparison for the F-Series

In Figs.!9.8–9.10 we give the results of the comparison of the different graph

representations we proposed for the F, J, and K-series, respectively. The dotted line

indicates the standard representation, which was what was used in Figs.!9.2–9.4. We use

the same graph sizes as we used previously in the distance measure comparison

(Figs.!9.5–9.7). Here, as before, we use n = 5 for our distance related representations, i.e.

5-distance and 5-simple distance. There are some interesting trends that are apparent in

these graphs. We see that while the standard representation performed well in many

cases, in the F and J data sets the simple representation produced the best performance of

all the methods (at k = 3 for the F-series and k = 5 for the J-series) while for the K-series

the absolute frequency representation was clearly the best for all values of k. For the F

and J-series this could indicate that the simple representation can be just as good or better

than the standard representation, but is more sensitive to the value of k. Note that in both

cases (F and J) the standard representation outperformed the simple representation for k =

1, which suggests that the standard method actually creates a representation that is better

when we compare two data items in the pair-wise sense; i.e. the standard method creates

www.manaraa.com

96

graphs that when compared to each other provide a more accurate distance value, and it is

only when we introduce larger neighborhoods of graphs that the simple representation

can be more effective than the standard. The relative frequency representation performed

well for the F-series at k = 1, but its performance declined with larger k values. For the J-

series, the opposite trend was present for relative frequency: larger values of k lead to

increasingly better performance.

76%

77%

78%

79%

80%

81%

82%

83%

84%

85%

86%

87%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!9.9. Graph Representation Comparison for the J-Series

72%

74%

76%

78%

80%

82%

84%

86%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Standard Simple 5-Distance

5-Simple Distance Absolute Frequency Relative Frequency

Figure!9.10. Graph Representation Comparison for the K-Series

www.manaraa.com

97

For the K-series, the superior performance of the absolute frequency

representation is possibly due to the fact that this is a highly homogeneous data set.

Compared to the F and J-series data sets, whose documents are authored by different

people and contain variations in style, layout, and structure, the K-series documents have

similar layout, structure and size due to being formatted and hosted by a single source

(Yahoo). Every document contains an identical subset of terms (e.g. “news”, “sports”,

etc.) that comes from elements such as menus and navigation links. Using the absolute

frequency representation may help differentiate document content under these conditions.

For example, the term “news” may appear on every document because it appears as a

navigational link, but if it appears twenty times instead of three this may be significant

for classification purposes. Alternatively, a term such as “news” appearing on a document

may have a low frequency due to it coming from a navigational link. Thus the importance

of such terms when calculating document similarity is less than other terms with higher

frequency (those that are content-related). This information is captured in the frequency-

related representations but not the other graph representations. The relative frequency

representation did not perform as well as absolute frequency for the K-series, indicating

that normalization of frequency values was not necessary for this homogeneous data set.

68%

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

1 2 3 4 5 6 7 8 9 10

Number of Nearest Neighbors (k)

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Vector model (cosine) Vector model (Jaccard)

MCS + Standard WGU/MMCSN + Simple

Figure!9.11.!Combining WGU/MMCSN Distance Measure and Simple

Representation for the J-Series

In the experimental results above we saw that while the MCS distance and

standard representation were consistently among the top performing methods in many

cases, for the J-series the WGU/MMCSN distance measure (Fig. 9.6, 87.03% for k = 3)

and simple graph representation (Fig. 9.9, 85.95% for k = 5) were the best performing

overall (the best performance overall being indicated by the data point that appears

highest in the chart). In order to determine if we could obtain an even better performance

www.manaraa.com

98

for the J-series, we considered the case where we combine the best overall performing

distance measure (WGU/MMCSN) and the best overall performing graph representation

(simple). Note that for both the F-series and the K-series the best overall distance

measure was MCS, and the results of combining the MCS distance measure with the

various representations is already given in Figs.!9.8 and 9.10. The outcome of combining

the WGU/MMCSN distance measure with the simple representation for the J-series is

given in Fig.!9.11. We see that we obtained a slightly better result than the combination

of MCS and standard for k = 5 (86.49%), which was also the best overall performance for

the J-series for k = 5. However, neither of the two combinations has a consistent

advantage over the other one.

9.4 Remarks

In this chapter we have examined the problem of classifying web documents

when the data items are represented by graphs instead of simpler feature vectors. To

perform the classification we developed a graph-based version of the k-Nearest

Neighbors classification algorithm, substituting a suitable graph-theoretical distance

measure in the place of the usual vector-related distance. Experimental results showed

that the graph-based method can outperform the traditional vector methods in both terms

of accuracy and execution time. We saw that graph distance measures that were not

normalized performed poorly, while those that were normalized to the interval [0,1]

yielded good results. For two heterogeneous collections of web documents we saw the

“standard” graph representation (all text including keyword and title information with

edge labels referring to document sections) perform well overall, though the “simple”

method (visible text only, section information ignored) achieved the best performance for

some values of k in both collections. In another, highly homogenous collection, the

absolute frequency representation was the best performing. The value of the k parameter

had no consistent effect on the performance for most representations and distance

measures.

A surprising result is that not only can the graph-based method be more accurate

than the vector model, it can also be similar in terms of classification time even though

graph similarity is a more expensive computation than vector distance (O(n2) for graphs

compared to O(n) for vectors). This is due in part to the increased representational power

of graphs over vectors: we only need a relatively few terms (nodes) per graph in

comparison to the number of dimensions used in the vector case. Further, since the vector

model requires that each vector representing a document include exactly the same set of

terms, this leads to overhead in execution time for the distance comparison of all

documents whether or not each term is actually useful for every document (i.e.

incorporating a new term always increases the dimensionality of all vectors by one). In

contrast, our graph-based method allows us to define specific terms for only a select

group of graphs by simply adding relevant nodes and edges to those graphs while leaving

the others unchanged. Consequently, n graphs each with m nodes can contain information

relating to up to n!m distinct terms, while n equal-size vectors with m dimensions in a

term–document matrix refers to m terms only. Given this observation it may be possible

to attain even better time savings by selecting the group of terms modeled in each graph

www.manaraa.com

99

more carefully. We could, for example, allow hard-to-classify documents to be

represented by larger graphs while using a minimal representation for others.

To conclude our remarks concerning graph representations under the k-NN

algorithm, we mention that in Appendix A some examples of actual web documents used

in our experiments are provided for inspection. The HTML source of three documents

randomly taken from the J-series collection is given in Figs.!A.1–A.3. These documents

are, respectively:

(1)!document #68, a press release originally from http://www.executone.com/

pressrel/vxc.htm which is classified as an information systems document

(2)!document #104, an employee rights document originally from http://riles.

alameda-coe.k12.ca.us/online/Dubl/Cert/2/EmplRi.html

(3)!document #183, a document describing a conference from http://www.

mf.polyu.edu.hk/seccabw.htm classified as a manufacturing systems document

The documents as they would appear when rendered in a web browser are shown in

Figs.!A.4–A.6. The corresponding graphs created for each of these documents,

constructed using the standard representation and a 10 node per graph limit, are given in

Appendix B (Figs.!B.1–B.3). Note that some graphs have fewer than ten nodes due to

stemming and subsequent conflation. The HTML source of the nearest neighbor

document of each example document in Appendix A, determined through the minimum

MCS distance, is given in Appendix C (Figs.!C.1–C.3); the rendered versions are given in

Figs.!C.4–C.6. The corresponding standard graph representations of the nearest neighbor

documents in Appendix C are given in Appendix D (Figs.!D.1–D.3).

www.manaraa.com

100

Chapter Ten

Conclusions and Future Work

In this dissertation we have introduced several new techniques for performing

web content mining tasks when utilizing more descriptive graphs in lieu of the usual case

of vector representations. Our first contribution is presenting a number of ways by which

web document content can be modeled as graphs. These graph representations retain

information that is usually lost when using a vector model, such as term order and

document section information. We demonstrated how with careful selection of a graph

representation, namely a representation with unique node labels, we can perform the

graph similarity task in O(n2) time (n being the number of nodes). In general, graph

similarity using maximum common subgraph is an NP-Complete problem, so this is an

important result that allows us to forgo sub-optimal approximation approaches and find

the exact solution in polynomial time.

Next we introduced the Graph Hierarchy Construction Algorithm (GHCA): a

novel, iterative hierarchical clustering algorithm which labels clusters according to topic.

GHCA was implemented as part of a system that automatically organized web documents

returned by conventional web search systems in order to allow for easier browsing of the

results and examination of related topics. Some useful benefits of this novel clustering

algorithm are: 1.!labeling of clusters by topic in order to convey each cluster’s purpose to

the user, 2.!the hierarchical ordering organizes clusters from the most general to the most

specific in order to allow users to “drill down” to their desired level of specificity, 3.!we

allow for clusters to have multiple parents and for assignment of pages to clusters to be

either exclusive or non-exclusive, 4.!we provide several parameters that the user to tailor

the behavior of the algorithm, such as limiting the maximum number of clusters created,

and 5. the graph representations used provide term ordering and phrase information

which permits a better display of cluster (topic) labels. Due to some special

circumstances that make comparison with ground truth difficult, such as the fact that

clusters are labeled by topic, the performance of our system was evaluated by comparing

it with two similar search clustering systems. The results show our search clustering

system compared favorably to the similar systems.

 Another contribution of this work is far more wide reaching: we extended

classical, well-known machine learning techniques, such as the k-means clustering

algorithm and k-Nearest Neighbors classification algorithm, to allow them to work

directly with graphs as data items, instead of more limited vectors. This is a major

contribution because: 1. it allows for complex, structured data, such as web documents, to

be represented by a more robust model that has the potential to retain information that is

usually discarded when using a vector representation and 2.!we can use many existing,

proven machine learning algorithms with graphs without having to create new,

www.manaraa.com

101

specialized ones. This opens up the possibility of using a variety of different techniques

with graph-based data, where previously sets of atomic (often purely numeric) data were

required due to theoretical limitations. Because the extended graph-theoretical versions of

these well-known algorithms do not limit the form of the graphs, they are applicable to

any graph-based representation of data. Thus we can change graph representations or

even application domains without reformulating the underlying algorithms.

In this dissertation we modeled web documents as graphs and performed

experiments comparing the performance of clustering and classification when using the

traditional vector representation and our novel graph-based representations. We

introduced several different graph representations and five graph-theoretical distance

measures. Experiments were performed on three web document data sets and

performance was measured using clustering performance measures as compared to

ground truth, cluster validity indices (such as the Dunn index), or accuracy measured by

leave-one-out (for classification procedures). Experimental results consistently show an

improvement in performance over the comparable vector-based methods when using

graph-based approaches. In addition, some of our experiments also showed an

improvement in execution time over the vector model.

A number of exciting avenues of future work related to graph-theoretic machine

learning exist. First, other machine learning algorithms can be adapted to work with

graph-based data. For example, a graph-theoretic version of the popular fuzzy c-means

algorithm, which is a partitional clustering algorithm which assigns fuzzy membership

values in the interval [0,1] to each item in a data set, could be created. These values

indicate the degree of membership of the data item in each cluster; higher values indicate

stronger membership. The typical fuzzy c-means algorithm works as follows [61]. First, a

fuzzy partition matrix A is generated randomly. Entry aij in matrix A indicates the

membership of data item i in cluster j. From this fuzzy matrix cluster centers vj are

calculated by the following equation:

!

v
j

=

[A
j
(x
k
)]
m
x
k

k =1

n
"

[A
j
(x
k
)]
m

k =1

n
"

(10.1)

where xk is the vector representing the kth data item (out of n total data items) and m is a

user provided parameter that controls the behavior of the algorithm. Next the fuzzy

matrix A is updated from the new cluster centers by:

!

aij =
d(x j ,vi)

d(x j ,vk)

"

$ $

%

&
' '

1

m(1

k=1

c

)
*

+

,
,
,

-

.

/
/
/

(1

(10.2)

where c is the number of clusters and d(x,v) is the distance between data item x and

cluster center v (usually defined as the Euclidean distance). The cluster centers and fuzzy

partition matrix are alternately recomputed using the same procedure, until the maximum

change in successive fuzzy matrices is less than or equal to some user provided value ;.

www.manaraa.com

102

At that point the algorithm is terminated and the matrix A contains the induced fuzzy

partition that represents the clustering of the data set. The main challenge with adapting

fuzzy c-means for graphs lies in creating a method of computing the cluster centers.

Under fuzzy c-means the cluster centers are computed with a weighted averaging that

takes into account the membership values of each data item. Thus the graph median

cannot be directly used as was done with k-means.

Second, new graph representations which may further improve performance can

be envisioned. We previously described several different methods of representing web

documents using graphs. It is possible to create other, more elaborate representations that

include even more information, such as information about HTML tags or document

elements such as sentences, paragraphs, sections, tables, images, lists and so forth. Future

experiments may compare the performance of such representations to the results

presented here.

Third, as we saw earlier, multidimensional scaling combined with graphs

promises to be an extremely interesting area of research. Scaling can be applied to graph-

based data when using different graph representations and distance measures in order to

visualize the impact each approach has. Other types of complex, structured data, such as

software code, can also be visualized with this method. In addition to visualization, the

Euclidean vector representation of the original data opens up the possibility of using a

wide array of additional techniques on graph-based data, such as neural networks. Future

experiments could compare, for example, graph-based k-means clustering performance to

the performance of vector-based k-means when using the scaled graph-based data. The

optimal number of dimensions to use during scaling is also an issue that needs to be

addressed experimentally, as there is a trade-off between the number of dimensions and

the amount of information lost during the scaling.

Finally, the methods developed here are applicable to many domains other than

web document content. File directories, organizational charts, images, and networks are

just some examples of domains that are naturally modeled by graphs. Now that we have

introduced methods that allow standard machine learning algorithms to deal with graph-

based representations, these types of data can be handled directly, without having to

discard the structural information in favor of a simpler vector model or create new

theoretical models of the particular domain.

www.manaraa.com

103

References

1. M.!Agosti and A.!Smeaton (Eds.), Information Retrieval and Hypertext, Kluwer

Academic Publishers, Norwell, MA, 1996.

2. R.!Agrawal, R.!J.!Bayardo Jr. and R.!Srikant, “Athena: Mining-based Interactive

Management of Text Databases”, Proceedings of the 7th Conference on Extending

Database Technology, 2000.

3. H.!Ahonen, O.!Heinonen, M.!Klemettinen, and A.!I.!Verkamo, “Applying Data

Mining Techniques in Text Analysis”, Technical Report C-1997-23, University of

Helsinki, Department of Computer Science, March 1997.

4. C.!Apte, F.!Damerau, and S.!M.!Weiss, “Automated Learning of Decision Rules

for Text Categorization”, ACM Transactions on Information Systems, Vol.!12, 1994,

pp.!233–251.

5. J.!G.!Augustson and J.!Minker, “An Analysis of Some Graph Theoretical Cluster

Techniques”, Journal of the Association of Computing Machinery, Vol.!17, No.!4,

October 1970, pp.!571–588.

6. R.!Baeza-Yates and B.!Ribeiro-Neto, Modern Information Retrieval, Addison-

Wesley, Wokingham, UK, 1999.

7 . D.!Beeferman and A.!Berger, “Agglomerative Clustering of a Search Engine

Query Log”, Proceedings of the 6th International Conference on Knowledge Discovery

and Data Mining ACM SIGKDD, 2000.

8. D.!Boley, M.!Gini, R.!Gross, E.!H.!Han, K.!Hastings, G.!Karypis, B.!Mobasher,

J.!Moore, “Partitioning-based Clustering for Web Document Categorization”, Decision

Support Systems, Vol.!27, 1999, pp.!329–341.

9. H.!Bunke, “On a relation between graph edit distance and maximum common

subgraph”, Pattern Recognition Letters, Vol.!18, 1997, pp.!689–694.

10. H.!Bunke, “Error Correcting Graph Matching: On the Influence of the Underlying

Cost Function”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol.!21, No.!9, September 1999, pp.!917–922.

11. H.!Bunke, “Recent developments in graph matching”, Proceedings of the 15th

International Conference on Pattern Recognition, Vol.!2, Barcelona, 2000, pp.!117–124.

1 2 . H.!Bunke, S.!Günter, and X.!Jiang, “Towards Bridging the Gap between

Statistical and Structural Pattern Recognition: Two New Concepts in Graph Matching”,

in Advances in Pattern Recognition - ICAPR 2001, S.!Singh, N.!Murshed, and

W.!Kropatsch (Eds.), Springer Verlag, LNCS!2013, 2001, pp.!1–11.

www.manaraa.com

104

13. H.!Bunke, X.!Jiang, and A.!Kandel, “On the minimum Common Supergraph of

Two Graphs”, Computing, Vol.!65, 2000, pp.!13–25.

14. H.!Bunke and A.!Kandel, “Mean and maximum common subgraph of two

graphs”, Pattern Recognition Letters, Vol.!21, 2000, pp.!163–168.

15. H.!Bunke and K.!Shearer, “A graph distance metric based on the maximal

common subgraph”, Pattern Recognition Letters, Vol.!19, 1998, pp.!255–259.

16. R.!Burgin, “The Retrieval Effectiveness of Five Clustering Algorithms as a

Function of Indexing Exhaustivity”, Journal of the American Society for Information

Science, Vol.!46, No.!8, 1995, pp.!562–572.

1 7 . S.!Chakrabarti, M.!H.!van!den!Berg, and B.!E.!Dom, “Distributed Hypertext

Resource Discovery Through Examples”, Proceedings of the 25th International

Conference on Very Large Databases, 1999, pp.!375–386.

18 . C.-H.!Chang and C.-C.!Hsu, “Customizable Multi-engine Search Tool with

Clustering”, Computer Networks and ISDN Systems, Vol.!29, 1997, pp.!1217–1224.

19. G.!Chartrand, G.!Kubicki, and M.!Schultz, “Graph similarity and distance in

graphs”, Aequationes Mathematicae, Vol.!55, 1998, pp.!129–145.

20. J.!Chen, A.!Mikulcic, and D.!H.!Kraft, “An Integrated Approach to Information

Retrieval with Fuzzy Clustering and Fuzzy Inferencing”, in Knowledge Management in

Fuzzy Databases, O.!Pons, M.!A.!Vila and J.!Kacprzyk (Eds.), Physica-Verlag,

Heidelberg, 2000, pp.!247–260.

21. D.!Conte, P.!Foggia, C.!Sansone, and M. Vento, “Thirty Years of Graph Matching

in Pattern Recognition”, to appear in International Journal of Pattern Recognition and

Artificial Intelligence.

22. T.!H.!Cormen, C.!E.!Leiserson, and R.!L.!Rivest, Introduction to Algorithms, The

MIT Press: Cambridge, Massachusetts, 1997.

23. T.!M.!Cover and J.!A.!Thomas, Elements of Information Theory, Wiley, 1991.

24. T.!F.!Cox and M.!A.!A.!Cox, Multidimensional Scaling, Chapman and Hall, 1994.

25. F.!Crimmins, A.!Smeaton, T.!Dkaki, and J.!Mothe, “TétraFusion: Information

Discovery on the Internet”, IEEE Intelligent Systems, Vol.!14, No.!4, 1999, pp.!55–62.

26. M.!Crochemore and W.!Rytter, Text Algorithms, Oxford University Press, New

York, NY, 1994.

27. M.!Crochemore and R.!Vérin, “Direct Construction of Compact Directed Acyclic

Word Graphs”, in CPM97 , A.!Apostolico and J.!Hein (Eds.), Springer-Verlag,

LNCS!1264, 1997, pp.!116–129.

28. A.!D.!J.!Cross, R.!C.!Wilson, and E.!R.!Hancock, “Inexact Graph Matching Using

Genetic Search”, Pattern Recognition, Vol.!30, No.!6, 1997, pp.!953–970.

www.manaraa.com

105

29. D.!B.!Crouch, C.!J.!Crouch, and G.!Andreas, “The Use of Cluster Hierarchies in

Hypertext Information Retrieval”, Proceedings of the ACM Hypertext ’89 Conference,

1989, pp.!225–237.

30. D.!Davies and D.!Bouldin, “A cluster separation measure”, IEEE Transactions on

Pattern Recognition and Machine Intelligence, Vol.!1, No.!2, 1979, pp.!209–224.

31. P.!De!Boeck and S.!Rosenberg, “Hierarchical Classes: Model and Data Analysis”,

Psychometrika, Vol.!53, No.!3, Sept. 1988, pp.!361–381.

32. S.!Deerwester, S.!Dumais, T.!Furnas, T.!Landaur and R.!Harshman, “Indexing by

Latent Semantic Analysis”, Journal of the American Society for Information Science,

Vol.!41, No.!6, pp.!391–407.

33. L.!Denoyer and P.!Gallinari, “A Belief Networks-Based Generative Model for

Structured Documents. An Application to the XML Categorizaion”, Lecture Notes in

Artificial Intelligence, Vol.!2734, 2003, pp.!328–342.

34. P.!J.!Dickinson, H.!Bunke, A.!Dadej, and M.!Kraetzl, “Application of Median

Graphs in Detection of Anomalous Change in Communication Networks”, Proceedings

of the World Multiconference on Systemics, Cybernetics and Informatics, Vol.!5, 2001,

pp.!194–197.

35. J.!Dunn, “Well separated clusters and optimal fuzzy partitions”, Journal of

Cybernetics, Vol.!4, pp.!95–104.

3 6 . S.!Dumais and H.!Chen, “Hierarchical Classification of Web Content”,

Proceedings of SIGIR-00, 23rd ACM International Conference on Research and

Development in Information Retrieval, 2000, pp.!256–263.

37. M.!Eirinaki and M.!Vazirgiannis, “Web Mining for Web Personalization”, ACM

Transactions on Internet Technology, Vol.!3, No.!1, 2003, pp.!1–27.

38. M.!A.!Eshera and K.-S.!Fu, “A Graph Distance Measure for Image Analysis”,

IEEE Transactions on Systems, Man, and Cybernetics, Vol.!SMC-14, No.!3, May/June

1984, pp.!398–408.

39. M.-L.!Fernández and G.!Valiente, “A graph distance metric combining maximum

common subgraph and minimum common supergraph”, Pattern Recognition Letters,

Vol.!22, 2001, pp.!753–758.

4 0 . A.!M.!Finch, R.!C.!Wilson, and E.!R.!Hancock, “An Energy Function and

Continuous Edit Process for Graph Matching”, Neural Computation, Vol.!10, 1998,

pp.!1873–1894.

41. H.!Frigui and R.!Krishnapuram, “A robust algorithm for automatic extraction of

an unknown number of clusters from noisy data”, Pattern Recognition Letters, Vol.!17,

1996, pp.!1223–1232.

42. J.!C.!Gardin, SYNTOL, The Rutgers University Press, New Brunswick, NJ, 1965.

www.manaraa.com

106

43. S.!Gold and A.!Rangarajan, “A Graduated Assignment Algorithm for Graph

Matching”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.!18,

No.!4, April 1996, pp.!377–388.

44. L.!Goodman and W.!Kruskal, “Measures of associations for cross-validations”,

Journal of the American Statistical Association, Vol.!49, 1954, pp.!732–764.

45. Google, http://www.google.com

46. A.!D.!Gordon, “Hierarchical Classification”, in Clustering and Classification,

P.!Arabie, L.!J.!Hubert, and G.!De!Soete (Eds.), World Scientific Publishing Company,

Singapore, 1996, pp.!65–122.

47. S.!C.!Grossman, “Chemical ordering of molecules: a graphic theoretical approach

to structure-property studies”, International Journal of Quantum Chemistry, Vol.!28,

No.!1, 1985, pp.!1–16.

4 8 . D.!A.!Grossman and O.!Frieder, Information Retrieval: Algorithms and

Heuristics, Klewer Academic Publishers, Norwell, MA,1998.

49. Grouper II, http://www.cs.washington.edu/research/clustering

50. S.!Günter and H.!Bunke, “Self-organizing map for clustering in the graph

domain”, Pattern Recognition Letters, Vol.!23, 2002, pp.!405–417.

51. P.!Hannappel, R.!Klapsing, and G.!Neumann, “MSEEC — A Multi Search Engine

with Multiple Clustering”, Proceedings of the 99 Information Resources Management

Association International Conference, May 1999.

52 . A.!Hardy, “On the number of clusters”, Computational Statistics & Data

Analysis, Vol.!23, 1996, pp.!83–96.

5 3 . K.!Haris, S.!N.!Efstratiadis, N.!Maglaveras, C.!Pappas, J.!Gourassas, and

G.!Louridas, “Model-Based Morphological Segmentation and Labeling of Coronary

Angiograms”, IEEE Transactions on Medical Imaging, Vol.!18, No.!10, October 1999,

pp.!1003–1015.

54. X.!He, C.!Ding, H.!Zha, and H. D. Simon, “Automatic Topic Identification Using

Webpage Clustering”, Proceedings of the IEEE International Conference on Data

Mining, 2001, pp.!195–202, 2001.

55. M.!Hearst and J.!Pedersen, “Reexamining the Cluster Hypothesis: Scatter/Gather

on Retrieval Results”, Proceedings of the 19th Annual International ACM/SIGIR

Conference on Research and Development in Information Retrieval, 1996.

56 . L.!Hubert and J.!Schultz, “Quadratic assignment as a general data-analysis

strategy”, British Journal of Mathematical and Statistical Psychology, Vol.!29, 1976,

pp.!190–240.

57. B.!Huet and E.!R.!Hancock, “Shape recognition from large image libraries by

inexact graph matching”, Pattern Recognition Letters, Vol.!20, 1999, pp.!1259–1269.

58 . A.!K.!Jain and R.!C.!Dubes, Algorithms for Clustering Data, Prentice-Hall,

Englewood Cliffs, NJ, 1988.

www.manaraa.com

107

59. A.!K.!Jain, M.!N.!Murty and P.!J.!Flynn, “Data Clustering: A Review”, ACM

Computing Surveys, Vol.!31, No.!3, Sept. 1999, pp.!264–323.

60. K.!S. Jones and M.!Kay, Linguistics and Information Science, Academic Press,

New York, NY, 1973.

61. G.!J.!Klir and B.!Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,

Prentice Hall, Upper Saddle River, 1995.

6 2 . T.!Kohonen, S.!Kaski, K.!Lagus, J.!Salojärvi, J.!Honkela, V.!Paatero and

A.!Saarela, “Self Organization of a Massive Document Collection”, IEEE Transactions

on Neural Networks, Vol.!11, No.!3, May 2000, pp.!574–585.

63 . R.!Kosala and H.!Blockeel, “Web Mining Research: A Survey”, SIGKDD

Explorations, Vol.!2, 2000, pp.!1–15.

64. R.!Kothari and D.!Pitts, “On finding the number of clusters”, Pattern Recognition

Letters, Vol.!20, 1999, pp.!405–416.

6 5 . W.!J.!Krzanowski and F.!H.!C.!Marriott, Multivariate Analysis Part 2:

Classification, covariance structures and repeated measurements, Arnold, 1995.

66. R.!Kumar, P.!Raghavan, S.!Rajagopalan, and A.!Tomkins, “Extracting Large-

Scale Knowledge Bases from the Web”, Proceedings of the 25th International

Conference on Very Large Databases, 1999, pp.!639–649.

67. M.!Lazarescu, H.!Bunke, and S.!Venkatesh, “Graph matching: fast candidate

elimination using machine learning techniques”, Advances in Pattern Recognition, Joint

IAPR International Workshops SSPR and SPR 2000, Lecture Notes in Computer Science

1876, 2000 pp.!236–245.

68. V.!Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions, and

Reversals”, Soviet Physics-Doklady, Vol.!10, 1966, pp.!707–710.

69. G.!Levi, “A note on the derivation of maximal common subgraphs of two directed

or undirected graphs”, Calcolo, Vol.!9, 1972, pp.!341–354.

70. J.!Liang, D.!Doermann, “Logical labeling of document images using layout graph

matching with adaptive learning”, Document Analysis Systems V, D.!Lopresti, J.!Hu,

R.!Kashi (Eds.), Springer–Verlag, Lecture Notes in Computer Science 2423, 2002,

pp.!224–235.

71. A.!Likas, N.!Vlassis, and J.!J.!Verbeek, “The global k-means algorithm”, Pattern

Recognition, Vol.!36, 2003, pp.!451–461.

72. D.!Lopresti and G.!Wilfong, “Applications of graph probing to web document

analysis”, Proceedings of the 1st International Workshop on Web Document Analysis

(WDA2001), 2001, pp.!51–54.

73. J.!B.!Lovins, “Development of a Stemming Algorithm”, Mechanical Translation

and Computational Linguistics, Vol.!11, No.!1-2, March 1968, pp.!22–31.

74. X.!Lu, “Document Retrieval: A Structural Approach”, Information Processing

and Management, Vol.!26, No.!2, pp.!209–218, 1990.

www.manaraa.com

108

7 5 . B.!Luo, A.!Robles-Kelly, A.!Torsello, R.!C.!Wilson and E.!R.!Hancock,

“Clustering shock trees”, 3rd IAPR-TC15 Workshop on Graph-based Representations in

Pattern Recognition (2001), pp.!217–228.

7 6 . G.!F.!Luger and W.!A.!Stubblefield, Artificial Intelligence: Structures and

Strategies for Complex Problem Solving, The Benjamin/Cummings Publishing Company,

Redwood City, CA, 1993.

7 7 . S.!A.!Macskassy, A.!Banerjee, B.!D.!Davison, and H.!Hirsh, “Human

Performance on Clustering Web Pages: A Preliminary Study”, Proceedings of The 4th

International Conference on Knowledge Discovery and Data Mining, 1998, pp.!264–268.

78. S.!K.!Madria, S.!S.!Bhowmick, W.-K. Ng and E.-P. Lim, “Research Issues in Web

Data Mining”, Data Warehousing and Knowledge Discovery, 1999, pp.!303–312.

7 9 . C.!Magnusson and H.!Vanharanta, “Visualizing Sequences of text Using

Collocational Networks”, Lecture Notes in Artificial Intelligence, Vol.!2734, 2003,

pp.!276–283.

80. M.!Marchiori, “The Quest for Correct Information on the Web: Hyper Search

Engines”, Computer Networks and ISDN Systems, Vol.!29, 1997, pp.!1225–1235.

81. F.!Masseglia, P.!Poncelet, and R.!Cicchetti, “WebTool: An Integrated Framework

for Data Mining”, Proceedings of the 10th International Conference and Workshop on

Database and Expert Systems Applications, 1999, pp.!892–901.

82. A.!McCallum and K.!Nigam, “A comparison of event models for Naive Bayes

text classification”, AAAI–98 Workshop on Learning for Text Categorization, 1998.

83. J.!J.!McGregor, “Backtrack search algorithms and the maximal common subgraph

problem”, Software Practice and Experience, Vol.!12, 1982, pp.!23–34.

84. C.!T.!Meadow, B.!R.!Boyce and D.!H.!Kraft, Text Information Retrieval Systems,

Academic Press, San Diego, CA, 2000.

85. S.!Medasani, R.!Krishnapuram, and Y.!S.!Choi, “Graph Matching by Relaxation

of Fuzzy Assignments”, IEEE Transactions on Fuzzy Systems, Vol.!9, No.!1, February

2001, pp.!173–182.

86. B.!T.!Messmer and H.!Bunke, “A new algorithm for error-tolerant subgraph

isomorphism detection”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol.!20, No.!5, 1998, pp.!493–504.

87. M.!Merzbacher, “Discovering Semantic Proximity for Web Pages”, Proceedings

of the 11th International Symposium on Methodologies for Intelligent Systems, 1999,

pp.!244–252.

88. B.!T.!Messmer and H.!Bunke, “A New Algorithm for Error-Tolerant Subgraph

Isomorphism Detection”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol.!20, No.!5, May 1998, pp.!493–504.

89. G.!A.!Miller, “WordNet: A Lexical Database for English”, Communications of the

ACM, Vol.!38, No.!11, 1995, pp.!39–41.

www.manaraa.com

109

9 0 . B.!Mirkin, Mathematical Classification and Clustering, Kluwer Academic

Publishers Group, Norwell, MA, 1996.

91. T.!M.!Mitchell, Machine Learning, McGraw-Hill, Boston, 1997.

92. R.!Myers, R.!C.!Wilson, and E.!R.!Hancock, “Bayesian Graph Edit Distance”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.!22, No.!6, June

2000, pp.!628–635.

93. U.!Y.!Nahm and R.!J.!Mooney, “A Mutually Beneficial Integration of Data

Mining and Information Extraction”, Proceedings of the 17th National Conference on

Artificial Intelligence, July 2000.

94. E.!Nakamura and N.!Kehtarnavaz, “Determining number of clusters and prototype

locations via multi-scale clustering”, Pattern Recognition Letters, Vol.!19, 1998,

pp.!1265–1283.

95. O.!Nasraoui, H.!Frigui, A.!Joshi, and R.!Krishnapuram, “Mining Web Access

Logs Using Relational Competitive Fuzzy Clustering”, Proceedings of the 8th

International Fuzzy Systems Association World Congress, 1999, pp.!869–873.

96. O.!Owolabi, “An efficient graph approach to matching chemical structures”,

Journal of Chemical Information and Computer Sciences, Vol.!28, No.!4, 1988,

pp.!221–226.

97. A.!T.!P. and C.!Siva!Ram!Murthy, “Optimal task allocation in distributed systems

by graph matching and state space search”, The Journal of Systems and Software,

Vol.!46, 1999, pp.!59–75.

98. N.!R.!Pal and J.!Biswas, “Cluster validation using graph theoretic concepts”,

Pattern Recognition, Vol.!30, No.!6, 1997, pp.!847–857.

99. S.!K.!Pal, V.!Talwar, and P.!Mitra, “Web Mining in Soft Computing Framework:

Relevance, State of the Art and Future Directions”, IEEE Transactions on Neural

Networks, Vol.!13, No.!5, 2000, pp.!1163–1177.

100. T.!Peterson, “Coping with Infoglut”, Computerworld (online article), http://www.

computerworld.com/databasetopics/data/story/0,10801,82314,00.html

101. B.!Piwowarski and P.!Gallinari, “A Machine Learning Model for Information

Retrieval with Structured Documents”, Lecture Notes in Artificial Intelligence,

Vol.!2734, 2003, pp.!425–438.

102. M.!F.!Porter, “An Algorithm for Suffix Stripping”, Program, Vol.!14, No.!3, July

1980, pp.!130–137.

103. W.!M.!Rand, “Objective criteria for the evaluation of clustering methods”,

Journal of the American Statistical Association, Vol.!66, 1971, pp.!846–850.

104. M.!R.!Rezaee, B.!P.!F.!Lelieveldt, J.!H.!C.!Reiber, “A new cluster validity index

for the fuzzy c-mean”, Pattern Recognition Letters, Vol.!19, 1998, pp.!237–246.

www.manaraa.com

110

105. S.!Rosenberg, I.!Van Mechelen, P.!De!Boeck, “A Hierarchical Classes Model:

Theory and Method with Applications in Psychology and Psychopathology”, in

Clustering and Classification, P.!Arabie, L.!J.!Hubert, and G.!De!Soete, (Eds.), World

Scientific Publishing Company, Singapore, 1996, pp.!123–155.

106. S.!Russell and P.!Norvig, Artificial Intelligence: A Modern Approach, Prentice-

Hall, Upper Saddle River, NJ, 1995.

107. G.!Salton, Automatic Text Processing: The Transformation, Analysis, and

Retrieval of Information by Computer, Addison-Wesley, Reading, MA, 1989.

108. A.!Sanfeliu and K.!S.!Fu, “A distance measure between attributed relational

graphs for pattern recognition”, IEEE Transactions on Systems, Man, and Cybernetics,

Vol.!13, 1983, pp.!353–363.

109. A.!Sanfeliu, F.!Serratosa, and R.!Alquézar, “Clustering of attributed graphs and

unsupervised synthesis of function-described graphs”, Proceedings of the 15th

International Conference on Pattern Recognition (ICPR’2000), Vol.!2, 2000,

pp.!1026–1029.

110. A.!Schenker, M.!Last, and A.!Kandel, “Design and Implementation of a Web

Mining System for Organizing Search Engine Results”, Proceedings of CAiSE'01

Workshop Data Integration over the Web (DIWeb), Interlaken, Switzerland, 4-5 June,

2001, pp.!62–75.

111. A.!Schenker, M.!Last, and A.!Kandel, “A Term-Based Algorithm for Hierarchical

Clustering of Web Documents”, Proceedings of IFSA / NAFIPS 2001, Vancouver,

Canada, July 25-28, 2001, pp.!3076–3081.

112. A.!Schenker, M.!Last, H.!Bunke and A.!Kandel, “Clustering of Web Documents

Using a Graph Model”, Web Document Analysis: Challenges and Opportunities, A.

Antonacopoulos, and J. Hu (Eds.), to appear.

113. A.!Schenker, M.!Last, H.!Bunke and A.!Kandel, “Graph Representations for Web

Document Clustering”, Proceedings of the 1st Iberian Conference on Pattern Recognition

and Image Analysis (IbPRIA), to appear.

1 1 4 . A.!Schenker, M.!Last, H.!Bunke and A.!Kandel, “Classification of Web

Documents Using a Graph Model”, Proceedings of the 7th International Conference on

Document Analysis and Recognition (ICDAR2003), to appear.

115. A.!Schenker, M.!Last, H.!Bunke and A.!Kandel, “Comparison of Distance

Measures for Graph-based Clustering of Documents”, Proceedings of the 4th IAPR-TC15

Workshop on Graph-based Representations (GbR’03), to appear.

116. A.!Schenker, M.!Last, H.!Bunke and A.!Kandel, “Classification of Documents

using Graph Matching”, International Journal of Pattern Recognition and Artificial

Intelligence, to appear.

117. A.!Schenker, M.!Last, H.!Bunke and A.!Kandel, “A Comparison of Two Novel

Algorithms for Clustering Web Documents”, 2nd International Conference on Web

Document Analysis, to appear.

www.manaraa.com

111

118. H.!Schütze and C.!Silverstein, “Projections for Efficient Document Clustering”,

Proceedings of the 20th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, 1997, pp.!74–81.

119. J.!Stefanowski and D.!Weiss, “Carrot2 and Language Properties in Web Search

Results”, Lecture Notes in Artificial Intelligence, Vol.!2663, p.!240–249.

120. A.!Strehl, J.!Ghosh, and R.!Mooney, “Impact of similarity measures on web-page

clustering”, AAAI-2000: Workshop of Artificial Intelligence for Web Search, 2000,

pp.!58–64.

121. K.-C.!Tai, “The tree-to-tree correction problem”, Journal of the Association for

Computing Machinery, Vol.!26, No.!3, 1979, pp.!422–433.

122. C.-M.!Tan, Y.-F.!Wang, and C.-D.!Lee, “The use of bigrams to enhance text

categorization”, Information Processing and Management, Vol.!38, 2002, pp.!529–546.

123. S.!Theodoridis and K.!Koutroumbas, Pattern Recognition, Academic Press, San

Diego, CA, 1999.

124 . J.!R.!Ullman, “An algorithm for subgraph isomorphism”, Journal of the

Association for Computing Machinery, Vol.!23, 1976, pp.!31–42.

125. Vivísimo, http://vivisimo.com/

126. R.!A.!Wagner and M.!J.!Fischer, “The String-to-String Correction Problem”,

Journal of the Association for Computing Machinery, Vol.!21, 1974, pp.!168–173.

127. W.!D.!Wallis, P.!Shoubridge, M.!Kraetz, and D.!Ray, “Graph distances using

graph union”, Pattern Recognition Letters, Vol.!22, 2001, pp.!701–704.

128. J.!T.!L.!Wang, K.!Zhang, and G.-W.!Chirn, “Algorithms for Approximate Graph

Matching”, Information Sciences, Vol.!82, 1995, pp.!45–74.

129. S.!Wei, S.!Jun, and Z.!Huicheng, “A fingerprint recognition system by use of

graph matching”, Proceedings of SPIE, Vol.!4554, 2001, pp.!141–146.

130. S.!M.!Weiss, C.!Apte, F.!J.!Damerau, D.!E.!Johnson, F.!J.!Oles, T.!Goetz, and

T.!Hampp, “Maximizing Text-Mining Performance”, IEEE Intelligent Systems, Vol.!14,

No.!4, Jul./Aug. 1999, pp.!63–69.

131. M.!L.!Williams, R.!C.!Wilson, and E.!R.!Hancock, “Multiple graph matching with

Bayesian inference”, Pattern Recognition Letters, Vol.!18, 1997, pp.!1275–1281.

132. L.!Wiskott, J.-M.!Fellous, N.!Krüger and C.!von!der!Malsburg, “Face Recognition

by Elastic Bunch Graph Matching”, Proceedings of the 7th International Conference on

Computer Analysis of Images and Patterns, 1997, pp.!456–463.

133. R.!C.!Wilson and E.!R.!Hancock, “Structural Matching by Discrete Relaxation”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.!19, No.!6, June

1997, pp.!634–647.

134. R.!C.!Wilson and E.!R.!Hancock, “Graph matching with hierarchical discrete

relaxation”, Pattern Recognition Letters, Vol.!20, 1999, pp.!1041–1052.

www.manaraa.com

112

135. C.-C.!Wong, C.-C.!Chen, and M.-C.!Su, “A novel algorithm for data clustering”,

Pattern Recogniton, Vol.!34, 2001, pp.!425–442.

1 3 6 . N.!Zahid, O.!Abouelala, M.!Limouri, and A.!Essaid, “Unsupervised fuzzy

clustering”, Pattern Recognition Letters, Vol.!20, 1999, pp.!123–129.

137 . N.!Zahid, M.!Limouri, and A.!Essaid, “A new cluster-validity for fuzzy

clustering”, Pattern Recognition, Vol.!332, 1999, pp.!1089–1097.

138. C.!T.!Zahn, “Graph-theoretical methods for detecting and describing gestalt

structures”, IEEE Transactions on Computers!C-20, 1971, pp.!68–86.

1 3 9 . O.!Zamir and O.!Etzioni, “Web Document Clustering: A Feasibility

Demonstration”, Proceedings of the 21st Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, 1998, pp.!46–54.

140. N.!Zhong, J.!Liu, and Y.!Yao, “In Search of the Wisdom Web”, Computer,

Vol.!35, No.!11, 2002, pp.!27–31.

www.manaraa.com

113

Appendices

www.manaraa.com

114

Appendix A: Examples of Documents Used in Experiments

<html>

<head>

<title>Press Release</title>

</head>

<body BGCOLOR="ffffff">

<CENTER><TABLE WIDTH=580 CELLPADDING=5><td valign=top>

<IMG border=0 SRC="../images/menubar.gif" ismap

align="left"></td>

<td>

<center>

</center>

<P>

CONTACT:

Fred Bucher/Jason Kannon

Austin Lawrence Group

(203)961-8888 Ext. 3010/3002

<p>

Tina Horne

Executone Information Systems, Inc.

(203)882-6317

<p>

<CENTER>EXECUTONE ADDS INTEGRATED COMMUNICATIONS SERVER

TO COMPUTER TELEPHONY ARSENAL</CENTER>

<p>

-- INFOSTAR/Voice Exchange Card delivers unbeatable technology and value --

<p>

MILFORD, CT, Nov. 7 -- Executone Information Systems, Inc. (NASDAQ:XTON) today

announced the release of the INFOSTAR/VXC Voice Exchange Card, a telephony

communications server imbedded in the company’s Integrated Digital System (IDS) switch.

As an integrated communications server, the VXC Card is designed to support computer

telephony applications in environments where a LAN may or may not be present. The VXC

Card is computer telephony at its most innovative -- it brings the computer to the

switch, reducing the need for a stand-alone PC to run standard voice mail/switch

applications.

<p>

"In some scenarios, where customers have existing LANs in place or are considering

LANs, it makes sense to run a dedicated piece of hardware as a communications server,"

said Michael Persky, Executone director of marketing for the computer telephony

division. "In other scenarios, the most reliable, cost-effective course of action is

to imbed the server in the IDS switch. With the VXC Card, Executone is positioned to

give the customer the best solution, based on the actual technology infrastructure.

Simultaneously, it provides a platform -- a server on which to build future computer

telephony applications."

<p>

Figure!A.1. Original HTML of Document #68 of the J-Series Data Set (Partial)

www.manaraa.com

115

Appendix A (Continued)

<HTML><HEAD><TITLE>ARTICLE IV - Employee Rights</TITLE></HEAD>

<BODY>

<H3 ALIGN="LEFT">ARTICLE IV</H3>

<HR>

<H2 ALIGN="CENTER">Employee Rights</H2>

<HR>

<P>

A. All employees shall have the right to become members of and

participate in legitimate activities of employee organizations.

Conversely, all employees shall have the right not to become members

of nor to participate in such organizational activities.

<P>

B. This agreement shall supersede any rules, regulations, or practices

of the Board of Trustees which are contrary with its terms.

<P>

C. The provisions of this agreement shall not be interpreted or

applied in a manner which is arbitrary, capricious, or discriminatory.

<P>

D. Application forms or oral interview procedures shall not include

questions about membership in employee organizations.

<!-- EndDoc -->

<HR>

</BODY></HTML>

Figure A.2. Original HTML of Document #104 of the J-Series Data Set

www.manaraa.com

116

Appendix A (Continued)

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html><head><title>The Third Asia Pacific Conference On Materials Processing</title>

<meta name="GENERATOR" content="Microsoft FrontPage 1.1">

</head><body background="gray.gif">

<p align=center> </p>

<hr><h1>The Third Asia Pacific Conference On Materials Processing </h1>

<h3>Hong Kong 12-14 November 1996</h3>

<p>Organised by </p>

The Hong Kong Polytechnic University

<p>in collaboration with </p>

Nanyang Technological University

National University of Singapore

Applied Research Corporation

<p>co-organised by </p>

Hong Kong University of Science and Technology <hr>

<h3><u>OBJECTIVES</u></h3>

<p>This conference, the third to be held in the series, started in Singapore and has grown to high

international status. The Conference Proceedings will once again be a Special Issue of the Journal of

Materials Processing Technology. The main objectives of the Conference are to enable world-renowned

researchers to present their latest findings and to provide a forum for the exchange of ideas between all

those concerned with materials processing. </p><hr>

<h3><u>SUBJECT AREAS</u></h3>

<p>The scope of the Conference will cover materials processing of metals, ceramics, polymers, and

composites in the following areas: </p>

Deformation Processing: Materials Removal Processes, Bulk Forming Processes, Solid Phase

Forming, Near Net Shape Forming, Sheet Forming,

Superplastic Forming, etc.

Forming in Melt or Near Melt Condition: Solidification Processing, Thixocasting, Squeeze

Casting, Die Casting, Melt Processing of Polymers, Extrusion, etc.

Powder Forming: Isostatic Pressing, Sintering, Metal and Ceramics Injection Moulding, etc.

Laser Processing: Cutting, Welding, Surface Modification, Trimming, and other Energy Beam

Processes, etc.

Processing of New and Advanced Materials: Fabrication of Composites, Nanocrystalline

Multilayer and Intelligent Materials, etc.

Other Related Processes: Thermo Mechanical Treatments, Die-manufacturing Processes,

Rapid Mould and Prototype Making Processes,

CAD/CAM/Modelling Techniques, etc. <hr>

<h3><u>General Information</u></h3>

<p>Hong Kong </p>

<p>Developed from a small entrepot just before World War II, Hong Kong has now become a dynamic,

efficient and cosmopolitan manufacturing, commercial and financial centre in the Pacific Rim. Despite its

small geographical size (1000 sq. km), it supports a population of 6 million. Hong Kong thrives because of

its excellent communication and transport links with the rest of the world, and is renowned as a tourists'

shopping and gourmet paradise. By 1997, the sovereignty of Hong Kong will revert from Britain to China.

The impact of this issue on the future of Hong Kong is a matter of world attention. </p>

<p>Venue of the Conference </p>

<p>The opening ceremony and the technical sessions of the conference will be held in Chiang Chen Studio

Threatre of the Hong Kong Polytechnic University and the Harbour Plaza respectively. They are both

Figure A.3. Original HTML of Document #183 of the J-Series Data Set (Partial)

www.manaraa.com

117

Appendix A (Continued)

Figure A.4. Document of Fig.!A.1 as Rendered in a Web Browser (Partial)

www.manaraa.com

118

Appendix A (Continued)

Figure A.5. Document of Fig.!A.2 as Rendered in a Web Browser

www.manaraa.com

119

Appendix A (Continued)

Figure A.6. Document of Fig.!A.3 as Rendered in a Web Browser (Partial)

www.manaraa.com

120

Appendix B: Graphs Created from Example Documents of Appendix A

APPLICATIONS

VXC

VOICE

TELEPHONY

SYSTEMS

SERVER

EXECUTEONE

COMPUTER

COMMUNICAT IONS

CARD

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

Figure!B.1. Standard Graph Representation Created from Web Document of

Fig.!A.1 Using 10 Nodes/Graph

www.manaraa.com

121

Appendix B (Continued)

ACTIVITIESAGREEMENT

ORGANIZATION

ONLINE

MEMBER

IV

EMPLOYEE

ARTICLE

PARTICIPATE

TX

TX, TI

Figure!B.2. Standard Graph Representation Created from Web Document of

Fig.!A.2 Using 10 Nodes/Graph

www.manaraa.com

122

Appendix B (Continued)

CHINA

CONFERENCE

UNIVERSITY

SESSIONPROF

PROCESS PRESENTATIONSMATERIALS

KONGHONG

TX

TX, TI

TX

TX

Figure!B.3. Standard Graph Representation Created from Web Document of
Fig.!A.3 Using 10 Nodes/Graph

www.manaraa.com

123

Appendix C: Nearest Neighbors of Example Documents

<!DOCTYPE HTML PUBLIC "-//SQ//DTD HTML 2.0 HoTMetaL + extensions//EN">

<HTML><HEAD>

<TITLE>OMICRONet THE SPIN Magazine - MELTDOWN COUNTDOWN TO YEAR

2000</TITLE></HEAD>

<BODY BACKGROUND="/bkgrd/blu_strp.gif">

<P> </P>

<HR><TABLE WIDTH="100%"><TR>

<TD VALIGN="TOP" ALIGN="LEFT"><IMG

SRC="/images/omnet-s.gif" ALIGN="TOP" BORDER="0">
<IMG

SRC="/images/navbar.gif" ALIGN="BOTTOM" ISMAP="ISMAP" BORDER="0"></TD>

<TD WIDTH="50"></TD>

<TD VALIGN="BOTTOM" ALIGN="RIGHT"><IMG

SRC="/images/thespin3.gif" ALIGN="BOTTOM">
<IMG

SRC="/images/features.gif" ALIGN="BOTTOM"></TD></TR></TABLE>

<HR><TABLE><TR><TD>

<PRE> </PRE></TD>

<TD COLSPAN="2">Click here for

OMICRON - Atlanta Year 2000 Work Group or to

contribute to the Electronic Interchange On Year

2000</TD></TR></TABLE><HR>

<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0" WIDTH="100%"><TR>

<TD VALIGN="TOP" ALIGN="LEFT" ROWSPAN="2">By:
Elicia

Fritsch

<PRE> </PRE></TD>

<TD VALIGN="TOP" ALIGN="LEFT" COLSPAN="2" ROWSPAN="2">

<BLOCKQUOTE>

<P>Meltdown Countdown To Year 2000</P>

ARE YOU READY

HOW DID THIS HAPPEN?

HOW BIG IS THE PROBLEM?

<LI SRC="#GOODNEWS">WHAT'S THE GOOD NEWS?

WHAT IS THE SOLUTION?

HOW MUCH WILL IT COST?

BUT IT'S ONLY 1996

(SIDE-BAR)

<HR></BLOCKQUOTE>

<PRE></PRE></TD>

<TD VALIGN="TOP" ALIGN="LEFT" ROWSPAN="2" WIDTH="20"></TD></TR>

<TR></TR><TR><TD></TD>

<TD COLSPAN="2"><HR>

<BLOCKQUOTE>

<P>Are you ready for the year 2000? More importantly, is

your computer system? Before reading further, perform this simple test.</P>

Set the date on your system to December 31, 1999

Set the time to 23:58:00

Turn your system off for five minutes

Figure!C.1. HTML Source of Nearest Neighbor of Document of Fig.!A.1 (Partial)

www.manaraa.com

124

Appendix C (Continued)

<HTML><HEAD>

<TITLE>Intellectual Property Rights</TITLE></HEAD>

<BODY background=images/1056a.jpg>

<HR size=10><P>

<H1>Intellectual Property Rights</H1>

<HR size=10><P>

The WTO Agreement on Trade-Related Aspects of Intellectual Property Rights

(TRIPS) recognizes that widely varying standards in the protection and enforcement of intellectual

property rights and the lack of multilateral disciplines dealing with international trade in counterfeit goods

have been a growing source of tension in international economic relations. With that in mind, the

agreement addresses the applicability of basic GATT principles and those of relevant international

intellectual property agreements; the provision of adequate intellectual property rights; the provision of

effective enforcement measures for those rights; multilateral dispute settlement; and transitional

implementation arrangements.<P>

 Part I of the agreement sets out general provisions and basic principles, notably a

national-treatment commitment under which nationals of other members must be given treatment no less

favourable than that accorded to a member's own nationals with regard to the protection of intellectual

property. It contains a most-favoured-nation clause under which any advantage a member gives to the

nationals of another member must normally be extended to the nationals of all other members, even if such

treatment is more favourable than that which it gives to its own nationals. <P>

 Part II addresses different kinds of intellectual property rights. It seeks to ensure that adequate standards

of intellectual property protection exist in all members countries, taking as a starting point the substantive

obligations of the main pre-existing conventions of the World Intellectual Property Organization (WIPO)

- namely, the Paris Convention for the Protection of Industrial Property and the Berne Convention for the

Protection of Literary and Artistic Works (copyright). It adds a significant number of new or higher

standards where the exuisting conventions were silent or thought inadequate<P>

 With respect to copyright, the agreement ensures that computer programs will be

protected as literary works under the Berne Convention and outlines how data bases should be protected.

<P>

 An important addition to existing international rules in the area of copyright and

related rights is the provision on rental rights. Authors of computer programmes and producers of sound

recordings have the right to authorize or prohibit the commercial rental of their works to the public. A

similar exclusive right applies to films where commercial rental has led to widespread copying which is

materially impairing the right of reproduction. Performers are protected from unauthorized recording,

reproduction and broadcast of live performances (bootlegging) for no less than 50 years. Producers of

sound recordings must have the right to prevent the reproduction of recordings for a period of 50 years.

<P>

 The agreement defines what types of signs must be eligible for protection as trademarks or service marks

and what the minimum rights conferred on their owners must be. Marks that have become well-known in a

particular country enjoy additional protection. The agreement identifies a number of obligations for

the use of trademarks and service marks, their terms of protection, and their licensing or assignment. For

example, requirements that foreign marks be used in conjunction with local marks will, as a general rule,

be prohibited.

<P>

 In respect of geographical indications, members must provide means to prevent the use of any indication

which misleads the consumer as to the origin of goods, and any use which would constitute an act of unfair

competition. Higher levels of protection are provided for geographical indications for wines and spirits,

which are protected even where there is no danger of the public's being misled as to the true origin.

Some exceptions are allowed, for example for names which are generic terms, but any country using such

Figure!C.2. HTML Source of Nearest Neighbor of Document of Fig.!A.2 (Partial)

www.manaraa.com

125

Appendix C (Continued)

<HTML>

<TITLE>Ranga Pitchumani's Homepage</TITLE>

<BODY BACKGROUND=dots3.gif TEXT="#000000" LINK="#ffff66" VLINK="#66ffff">

<TABLE>

<TR VALIGN=TOP>

<TD WIDTH=800>

Ranga Pitchumani

Assistant Professor

<P>

Education
PhD

Mechanical Engineering

Carnegie-Mellon University,

Pittsburgh

1992<P>

ME

Mechanical Engineering

Carnegie-Mellon

University,
 Pittsburgh

1988<P>

BS

Mechanical Engineering

Indian Institute of Technology,
Bombay 1986

</TD><TD>

Research Interests

Materials Processing/Manufacturing, transport phenomena in manufacturing, composite materials, process

design and optimization, concurrent engineering, artificial intelligence applications in manufacturing

<P>

Most Recent Publications

Steiner, K.V., Bauer, B.M., Pitchumani, R., and Gillespie, J.W., Jr. "Experimental Verification of

Modeling and Control for Thermoplastic Tow Placement," in Proceedings of the 40th International

SAMPE Symposium and Exhibition, 1995.

<P>

Pitchumani, R., Liaw, P.K., Hsu, D.K., Yao, S.C., "An Eddy Current Technique for the Measurement of

Constituent volume Fractions in a Three-Phase Metal-Matrix Composite," Journal of Composite Materials,

28(18), 1742-1769, 1994.

<P>

Butler, C.A., Pitchumani, R., Wedgewood, A.G., Gillespie, J.W., Jr., "Coupled Effects of Healing and

Intimate Contact on Thermoplastic Fusion Bonding," in Proceedings of the 10th Annual ASM/ESD

Advanced Composites Conference, 595-604, 1994.

<P>

Pitchumani, R., "A Fractal Geometry Approach to Modeling Disordered Composite Microstructures and

their Properties," in Proceedings of the 9th Technical Conference of the American Society for Composites,

807-817, 1994.

<P>

Pitchumani, R., Kordon, A.K., Beris, A.N., Rossing., B.R., Johnson, W.B., "Thermofluid Analysis and

Design of a Low Temperature Ceramic Injection Molding Process," Metallurgical and Materials

Transactions B., 25B, 761-771, 1994.

Figure!C.3. HTML Source of Nearest Neighbor of Document of Fig.!A.3 (Partial)

www.manaraa.com

126

Appendix C (Continued)

Figure C.4. Document of Fig.!C.1 as Rendered in a Web Browser (Partial)

www.manaraa.com

127

Appendix C (Continued)

Figure C.5. Document of Fig.!C.2 as Rendered in a Web Browser (Partial)

www.manaraa.com

128

Appendix C (Continued)

Figure C.6. Document of Fig.!C.3 as Rendered in a Web Browser (Partial)

www.manaraa.com

129

Appendix D: Graphs of Nearest Neighbors

APPLICATIONS SOFTWARE CODE

PROBLEMSYSTEMS

YEAR

COMPUTER

COMPANYBUSINESS

TX

TX

TX

TX

Figure!D.1. Standard Graph Representation of Document of Fig.!C.1

www.manaraa.com

130

Appendix D (Continued)

INTELLECTUAL PROPERTY YEAR

MEMBERPROTECTION

PERIOD

PROVIDE

COMMERCIALAGREEMENT

TX

TX, TI

PROTECTED

TX

Figure!D.2. Standard Graph Representation of Document of Fig.!C.2

www.manaraa.com

131

Appendix D (Continued)

ASME

SYMPOSIUM

PROCESS

PROCEEDINGSPITCHUMANI

MATERIALS

MANUFACTURING

ENGINEERING

COMPOSITE

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

Figure!D.3. Standard Graph Representation of Document of Fig.!C.3

www.manaraa.com

About the Author

Adam Schenker received the M.S. degree in Computer Engineering from the University

of South Florida in 1999. He is a member of Tau Beta Pi, Upsilon Pi Epsilon, and Phi

Kappa Phi. He has published several papers related to soft computing techniques and data

mining which have appeared in journals such as Fuzzy Economic Review, the

International Journal of Image and Graphics, the International Journal of Pattern

Recognition and Artificial Intelligence, and the International Journal of Fuzzy Systems.

He has been a Research Assistant at the National Institute of Systems Test and

Productivity at the University of South Florida since 2001. His current research interests

include data mining, soft computing and software testing.

	Graph-Theoretic Techniques for Web Content Mining
	Scholar Commons Citation

	tmp.1298573646.pdf.FbTqT

